
Security
Kevin Webb

Swarthmore College

April 23, 2020

Actual actual reality: nobody cares about his secrets.
(Also, I would be hard-pressed to find that wrench for $5.)

xkcd #538

https://xkcd.com/538/

Today’s Goals

• What security means, and the challenges of working in this area.

• Broad categories of attacks.

• Specific attacks and ways to defend against them.

• (This is intended to be a fun topic. It’s related to OS, but not
necessarily “CORE OS”.)

Security

• Perpetual arms race between attackers and defenders.
• Attacker: “How can I cheat the system? I’m willing to lie/cheat/steal…”

• Defender: “How can I prevent cheating, or at least make it not worth it…”

• Security is both interesting and difficult: often very clever solutions.

• Today: brief introduction into some of the most impactful ideas.

Security Research

• Theoretical security: how can we design an algorithm / system that
can’t be cheated?
• Example: cryptography

• Focus today: applied security
• How can we compromise the integrity of a real system?

• Often attack the implementation, not the idea.

• Promise me you won’t use anything here for evil!

“Threat Model”

• Thinking about security, it helps to characterize the potential
attacker(s), their capabilities, and their motivations.

• Where are your system’s weaknesses?

• Defenses look VERY different when:
• Attackers are bored teenagers who are looking for any old website to deface

for laughs.

• Attackers are a well-funded and trained foreign government looking to steal
specific state secrets.

Broad Classes of Attacks

1. Social engineering

2. Denial of service

3. Information leakage
• Due to coding bugs

• Side-channel attacks

4. Arbitrary / remote code execution

Social Engineering

• Idea: humans in the loop are often the weak point, target them…

• Real world: fancy way of saying “tricking people”.

• Famous example: Kevin Mitnick

Social Engineering

• https://en.wikipedia.org/wiki/Kevin_Mitnick

https://en.wikipedia.org/wiki/Kevin_Mitnick

Social Engineering

• Other examples: phishing, robo calls, “spear phishing”,
“smishing” / “cat phishing”

• Mitigation solutions:
• Better training / education

• Law enforcement

…

• Warning users about suspicious emails / web pages (perhaps w/ crypto keys)

Denial of Service (DoS)

• Goals:
• Prevent victim from doing business.

• Send some sort of political / ideological message.

• Ruin someone’s day for “fun”.

• Real-world analogy: picketing outside a
building / blocking entry.

Cat performing the classic “denial of pizza” attack.

DoS Examples

1. Attacker discovers a bug that causes a crash, triggers it intentionally.

• Hypothetical example: you’re writing a file system, and you don’t
validate that read offsets are less than the size of the file.

• Real example: “ping of death” (1997ish)
• IP uses 16 bits to indicate packet size. (65535 bytes max)

• Due to weirdness of “IP fragmentation”, it’s possible to send larger packets (in
violation of the specification!)

• Nearly every OS that received such a message would crash.

Suppose you wanted to attack your Lab 5 file
system. Are there vulnerabilities you could
exploit to trigger a crash?

DoS Examples

1. Attacker discovers a bug that causes a crash, triggers it intentionally.

• Hypothetical example: you’re writing a file system, and you don’t
validate that read offsets are less than the size of the file.

• Real example: “ping of death” (1997ish)
• IP uses 16 bits to indicate packet size. (65535 bytes max)

• Due to weirdness of “IP fragmentation”, it’s possible to send larger packets (in
violation of the specification!)

• Nearly every OS that received such a message would crash.

DoS Examples

2. Intentionally overloading resource capacity.

• Classic “fork bomb”:

while (1)

fork();

• Distributed denial of service:
• Flood a victim with so much traffic from all over the Internet, they can’t do

any real work.

Distributed Denial of Service (DDoS)

• Possibility 1: Control a “bot net”.
• Use remote execution attack to take control over lots of computers.

• Tell them all to flood victim with traffic.

• Laugh at and/or extort victim for ransom money

• Possibility 2: Exploit other resources / protocols on the Internet.
• Example: DNS Amplification Attack

• Normal behavior: make a DNS name query (e.g., swarthmore.edu), get back IP
address or error message explaining what went wrong.

• Exploit: lie about who you are, make queries that fail intentionally.

Notable DDoS Example: “Lizard Squad”

• https://en.wikipedia.org/wiki/Lizard_Squad

https://en.wikipedia.org/wiki/Lizard_Squad

Notable DDoS Example: “Lizard Squad”

• https://en.wikipedia.org/wiki/Lizard_Squad

• Aftermath:
https://www.engadget.com/2017/12/22/lizard-squad-hacker-
founder-guilty/

https://en.wikipedia.org/wiki/Lizard_Squad
https://www.engadget.com/2017/12/22/lizard-squad-hacker-founder-guilty/

DoS Examples

3. “Ransomware”: Hold user’s files hostage.
• Use remote execution attack to encrypt a user’s files.

• Make them pay to get the files back.

• Notable example: WannaCry (May 2017)
• Affected >230,000 machines, including UK’s NHS, FedEx, Honda, many others

• Similar attacks have been used against people on our campus!

DoS Mitigation

• Varies a lot depending on attack type…

• In general…
• Write bug-free code! :D

• Find and punish offenders.

• Audit code for bugs, fix them, distribute updates.

Relevant:

https://www.google.com/searc
h?q=windows+update+meme

https://www.google.com/search?q=windows+update+meme

Information Leakage

1. Buggy program reveals information that it’s not supposed to reveal.

2. Side channel: Attacker learns information by observing seemingly
innocuous information.

Suppose you wanted to attack your Lab 5 file
system. Are there vulnerabilities you could
exploit to leak unauthorized information?

• (assume files had access control)

Information Leakage Examples

• Hypothetical example: you’re writing a file system, and you don’t
validate that read offsets are less than the size of the file.
• Accidentally read / retrieve for user data in neighboring file.

• Recent example:
• http://www.cbc.ca/news/canada/nova-scotia/freedom-of-information-

request-privacy-breach-teen-speaks-out-1.4621970

http://www.cbc.ca/news/canada/nova-scotia/freedom-of-information-request-privacy-breach-teen-speaks-out-1.4621970

Side Channels

• Learn information you’re not supposed to know, despite barriers in
place.

• “Real (?) world” example: rent hotel room next to victim, attempt to
listen in through walls.

• Simple computing example:
• You want to know whether your victim is using their computer or not, but you

can’t log in. Point thermometer at it, measure heat output.

More Interesting Example…

• Threat model: determined attacker is targeting specific victim.
Attacker knows target using public cloud resources, can use them too.

• Suppose victim is a web service, attacker can interact with them.

• Scenario: cloud service provider, with multiple users sharing a
physical machine. Each user gets a private VM, with copy of OS.
• Problem: library code (e.g., encryption code) is the same on both.

More Interesting Example

• Attacker: request many VMs, attempt to get one that is physically
co-located with target victim.

• Attacker:
• Load CPU cache with data.

• Trigger victim to do something with encryption keys.

• Read back original data, and time how long it takes to read.
• Fast? => still in cache, victim didn’t evict that data.

• Slow? => victim used something that conflicted, evicted attacker data

More Interesting Example

• Attacker:
• Load CPU cache with data.

• Trigger victim to do something with encryption keys.

• Read back original data, and time how long it takes to read.
• Fast? => still in cache, victim didn’t evict that data.

• Slow? => victim used something that conflicted, evicted attacker data

• So what? How does cache usage tell us anything?

Cache Architecture

• If only certain data is slow, it might tell us whether or not victim executed
certain instructions (e.g., did they take an if branch).

• Which ifs do we care about? The ones that interact with encryption keys!

Core
1

Core
2

L1 Inst

L1 Data
L2

L1 Inst

L1 Data
L2

L3 Main Memory

Related: Spectre and Meltdown (2018)

• Modern CPU: deeply pipelined execution
• Multiple instructions in-flight at once, at different stages

• In many cases, memory values not known yet

• For example, during a branch (if), CPU might not know which side will be taken

• Rather than wait, guess (“branch prediction”). If wrong, discard results.

(CS 31) Recap CPU Model

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Four stages: fetch instruction, decode instruction, execute, store result

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Laundry

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

4-hour cycle time.

Finishes a laundry load every cycle.

(6 laundry loads per day)

Pipelining (Laundry)

W

DyW

FDyW

DrFDyW

DrFDyW

1 Hour

1st hour:

2nd hour:

3rd hour:

4th hour:

5th hour:

Steady state: One load finishes every hour!
(Not every four hours like before.)

Pipelining (CPU)

F

DF

EDF

SEDF

SEDF

1 Nanosecond

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!
(Clock rate can be faster.)

CPU Stages: fetch, decode,
execute, store results

CPU Pipelining - Reality

Source: https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Related: Spectre and Meltdown (2018)

• Modern CPU: deeply pipelined execution
• Multiple instructions in-flight at once, at different stages
• In many cases, memory values not known yet
• For example, during a branch (if), CPU might not know which side will be taken
• Rather than wait, guess (“branch prediction”). If wrong, discard results.

• Hardware problem: discarded speculative executions were changing
the state of the CPU (caches, branch target buffers)

• Use CPU “speculative execution” to learn about the state of the cache,
even for memory you’re not allowed to access.

Side Channels with Sensors

• Many of us have smart phones, which have lots of sensors…

• Some sensors (microphone, camera, GPS) clearly abusable.
• User presented with choice to allow/deny apps access.

• Other sensors (gyroscope, accelerometer) require no user
approval to use in applications.

Suppose a user installs your app. How can you use
something like a phone’s gyroscope for evil?

• Gyrophone: Recognizing Speech from Gyroscope Signals

• https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-
paper-michalevsky.pdf

“We achieve about 50% success rate for speaker identification from a set of
10 speakers. We also show that while limiting ourselves to a small
vocabulary consisting solely of digit pronunciations (”one”, ”two”, ”three”, ...)
and achieve speech recognition success rate of 65% for the speaker
dependent case and up to 26% recognition rate for the speaker independent
case. This capability allows an attacker to substantially leak information
about numbers spoken over or next to a phone (i.e. credit card numbers,
social security numbers and the like).”

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-michalevsky.pdf

Next year, same conference:

• PowerSpy: Location Tracking using Mobile Device Power Analysis

• https://www.usenix.org/system/files/conference/usenixsecurity15/se
c15-paper-michalevsky.pdf

• Power usage information also unrestricted to applications.

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-michalevsky.pdf

Arbitrary Execution

• Take over someone else’s machine, make it execute your evil
commands. (called “remote” code execution over network)

• “Real world”: hypnosis? mind control?

• Historically, requires two major steps:
1. Get evil instructions into target/victim program.

2. Cause victim to execute those instructions (alter control flow).

Recall: The Stack

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee

…

First Argument to Callee

Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s
frame.

Callee’s
frame.

Shared by caller
and callee.

Classic Buffer Overflow

• See: “Smashing the Stack for Fun and Profit”

• Goal: overwrite the return address to hijack control flow. Make PC
jump to instructions from attacker input.

A well intentioned program…

• Suppose we have a protocol that does recv() until it finds
\r\n\r\n. (or even just reading from stdin)

buf[0]

buf[999]

Ret urn add ress

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Suppose we have a protocol that does recv() until it finds
\r\n\r\n.

G E T /

i n d e x

. h t m l

\0 \0 \0 \0 \0

Ret urn add ress

Stack
Memory

…

char buf[1000]

A well intentioned program…

• What happens if we’re sent more than 1000 bytes before we
see \r\n\r\n? Keep writing…

G E T /

i n d e x

. h t m l

D D D D D

D D D D

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Uh, if we can overwrite the return address…

• We can control execution on return.

G E T /

i n d e x

. h t m l

D D D D D

D D D D

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Let’s send malicious data that contains a ptr.

G E T /

i n d e x

. h t m l

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Let’s send malicious data that contains a ptr.

G E T /

i n d e x

. h t m l

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Oh, and also some commands up here…

E V I L

C O D E

H E R E

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Function returns, executes evil code.

E V I L

C O D E

H E R E

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Improve chances: “NO OP sled”

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

E V I L

C O D E

PTR PTR PTR PTR

Stack
Memory

…
char buf[1000]

A well intentioned program…

• See: “Smashing the Stack for Fun and Profit”

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

E V I L

C O D E

PTR PTR PTR PTR

Stack
Memory

…
char buf[1000]

Input from Users

• Programs that receive user input are
susceptible to buffer overflow (& more) attacks.

• Potentially much more problematic to receive
input from the Internet!

• If attackers can take over program’s control
flow, they can execute anything.

Relevant XKCD #327

Alt text: Her daughter is named Help I'm trapped in a driver's license factory.

Bottom line: be careful about what you’re accepting from users!
Make sure the memory you’re using is bounded and that the data is valid!

1988: The Morris Worm

• Cornell student Robert Morris

• Exploited buffer overflow in fingerd
– It had a 512-byte buffer, he exploited it to execute /bin/sh, giving him

shell access

• Told compromised host to download his worm code, it self-
replicated by exploiting others

• Claimed “wanted to gauge size of Internet”

1988: The Morris Worm

• Worm did a check to see if it needed to replicate itself

– If machine already compromised (process running) don’t infect again.

• Worried about admins putting up fake process

– Replicate anyway, at random, 1/7 times.

• This effectively shut down LOTS of machines.

1988: The Morris Worm

• Robert Morris:

– First person convicted under Computer Fraud and Abuse Act

– Sentenced to three years probation, 400 hours community service,
$10,000

• Where is he now?

Another Famous Buffer Overflow

• https://en.wikipedia.org/wiki/Blaster_(computer_worm)

• There are MANY similar examples from ~2000 – 2005.

https://en.wikipedia.org/wiki/Blaster_(computer_worm)

My Console for a Horse…

• Nintendo Wii game: The Legend of Zelda: Twilight Princess

• You get to name your horse (Epona).

• Data saved to memory card, loaded
on restart of game.

• Horse name length NOT checked!

See: http://wiibrew.org/wiki/Twilight_Hack

http://wiibrew.org/wiki/Twilight_Hack

Final Example…

• More recently:

• https://arstechnica.com/gaming/2018/04/the-unpatchable-
exploit-that-makes-every-current-nintendo-switch-hackable/

https://arstechnica.com/gaming/2018/04/the-unpatchable-exploit-that-makes-every-current-nintendo-switch-hackable/

What can we do to prevent buffer overflow attacks?

• As the programmer?

• As the OS developer?

• In the compiler or hardware?

Buffer Overflow Mitigation

• Option 1: Stack Canary

– Generate a random “canary” value at program start (unknown to
potential attackers). Put it on the stack before each return address.

– Before returning, always verify that canary is intact.

– If canary is changed, terminate the process.

• Pros: no special help from OS or hardware, only compiler

• Cons: arbitrary execution => denial of service, requires recompile

Buffer Overflow Mitigation

• Option 2: W^X (“W xor X”)
– Enforce in OS & hardware: a page in memory can be writable or

executable, but not both (at the same time).

• Pros: enforced by system, prevents stack execution

• Cons:
– Requires help from hardware (mostly available now)

– There are some legit cases where we want writable, executable
memory (e.g., JIT javascript compilers in browsers).

How can we still be evil?

• Historically, arbitrary execution requires two major steps:

1. Get evil instructions into target/victim program.

2. Cause victim to execute those instructions (alter control flow).

• Let’s assume we’re all using W^X, which makes #1 (mostly)
impossible.

How can we still be evil?

• Historically, arbitrary execution requires two major steps:

1. Get evil instructions into target/victim program.

2. Cause victim to execute those instructions (alter control flow).

• Let’s assume we’re all using W^X, which makes #1 (mostly)
impossible.

• Is this game over, or can we still perform arbitrary execution?

Return-Oriented Programming

• Proof of concept in 1997, built practically in 2007.

• Super clever idea: all the code you could possibly need is
already available in the target application.

• Most common variant: “return into libc”: the C library is, by
itself, large enough to have any code attacker might want.

In other words, we don’t need to inject evil instructions. All we really need is to hijack the
control flow and find the existing instructions we need to perform our evil work.

Recall: Functions in Assembly
function:

pushl %ebp

movl %esp, %ebp

Function body here

leave

ret

Set up the stack frame
for this function.

Restore caller’s %esp, %ebp.

Return from function

In libc, the instructions
in the body implement
library calls…

Return-Oriented Programming
function:

pushl %ebp

movl %esp, %ebp

incl %ecx

…

movl (%ecx), %eax

notl %edx

addl %ecx, %eax

leave

ret

Set up the stack frame
for this function.

Restore caller’s %esp, %ebp.

Return from function

What I really
need is a:

notl %edx
Force
jump to
here:

Quickly
return:

Return-Oriented Programming
function:

pushl %ebp

movl %esp, %ebp

incl %ecx

…

movl (%ecx), %eax

notl %edx

addl %ecx, %eax

leave

ret

• In general: find all the ‘ret’ instructions
in C library, and what happens before
each one.

• Assumption: we know or can determine
version of victim’s C library code.

• Determine “gadgets”: ways of stringing
together small pieces of functions to
achieve arbitrary goals.

Return-Oriented Programming
function:

pushl %ebp

movl %esp, %ebp

incl %ecx

…

movl (%ecx), %eax

notl %edx

addl %ecx, %eax

leave

ret

• Hijack control flow, execute gadgets.

• There’s enough code in libc to build a
Turing-complete set of gadgets:

– conditionals

– loops

– variables

– etc.

How can we defend against ROP?

ROP Mitigation

• Option 1: Address Space Layout Randomization (ASLR):

– Don’t load library code into known locations, mix up the code region
of the virtual address space.

– Goal: Attacker won’t know which addresses to jump to for gadgets.

• Requires OS support (to randomize when process starts up).

• Requires complier support (to build code that can be place
anywhere in memory, at random). (position-independence)

ROP Mitigation

• Option 2: Control Flow Integrity (CFI)

– Intuition: only allow jumps to pre-approved locations (e.g., the start
of a legit function).

– Keep a structure to record valid jump locations. On each function call
and return, check structure for jump target location.

– If target not valid, terminate process.

Control Flow Integrity

• Pro: no control flow hijacking!

• Cons:

– performance hit from checking every call/return

– turns arbitrary execution into denial of service

– must recompile applications

State of the Art

• Buffer overflows are still out there, despite mitigations.

• The arms race continues between attackers, defenders.

• ASLR is becoming common, but not as much as you’d like.

• CFI gaining some traction, but not widely adopted…

State of the Art

• Buffer overflows are still out there, despite mitigations.

• In the meantime, many applications still vulnerable, and we’re
not just talking about video game horses…

“Comprehensive Experimental Analyses of
Automotive Attack Surfaces”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

• Modern cars have a network (“CAN Bus”) that connects
basically every device in the vehicle.

– engines, lights, stereo, locks, brakes, bluetooth, cellular (onstar)

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

“Comprehensive Experimental Analyses of
Automotive Attack Surfaces”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

Detailed Examples:

• Stefan Savage, one of the authors:

• https://www.youtube.com/watch?v=oiFnjuOYz3k&t=629

https://www.youtube.com/watch?v=oiFnjuOYz3k&t=629

Other Common Remote Execution Exploits

• Trojans (trick user into downloading, running)

• Browser exploits (drive-by downloads)

Other Common Remote Execution Exploits

• Trojans (trick user into downloading, running)

• Browser exploits (drive-by downloads)

• Great, so you’ve figured out how to execute arbitrary code on
lots of computers out there. How do you benefit from that?

BotNets

• Having access to 1000’s of machines is lucrative!

• Flood target with traffic (DDoS).

• Hold files hostage with ransomeware.

• Steal data (CC #’s, state secrets, etc.).

• Mine bitcoins.

• Send Spam.

Spam “Affiliate Programs”

• https://www.cs.uic.edu/~ckanich/papers/spamalytics.pdf

• https://www.usenix.org/system/files/conference/usenixsecurit
y12/sec12-final204.pdf

https://www.cs.uic.edu/~ckanich/papers/spamalytics.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final204.pdf

Security and Trust

• “Reflections on Trusting Trust” by Ken Thompson

– https://dl.acm.org/citation.cfm?id=358210

• Turing award acceptance speech in 1984.

– Hid a “back door” in Unix login program and compiler.

https://dl.acm.org/citation.cfm?id=358210

Summary

• Many different common classes of attacks:

– social engineering, denial of service,
information leakage, arbitrary code execution

• Security: battle of wits between attackers and defenders.

– Defenders make attacking difficult, but systems often deployed slowly.

• Evil can be lucrative, but it makes you a criminal…

