
Protection
Kevin Webb

Swarthmore College

April 21, 2020

xkcd #1200

Before you say anything, no, I know
not to leave my computer sitting out
logged in to all my accounts. I have
it set up so after a few minutes of
inactivity it automatically switches
to my brother's.

https://xkcd.com/1200/

Today’s Goals

• Meaning of ‘protection’, and contrast with ‘security’.

• Models for representing protection in an OS.

• Real examples in Unix for non-trivial file protection.

Protection

• Protection: a mechanism for controlling access to the resources
provided by a computer system.

• Why is protection needed?
• Prevent unauthorized users from accessing data / resources.

• Prevent buggy programs from wreaking havoc on the system (e.g., memory).

Protection vs. Security

Protection

• Mechanisms
• Bits set? You can access.
• Simple(r) expression.

• Users play by the rules.

• The system is implemented
correctly.

Security

• Policies
• Only the members of the

development team can read this file,
and only senior developers and
managers can edit it.

• Users are evil and untrusted!

• The system has flaws, and users
will exploit them!

OS Kernel Enforces Protection

• To protect resources, let OS “own” them
• OS can allow access to other actors (temporarily).

• To access a resource, a process must ask for it
• OS can test whether access should be given.

• Once a process is given access…
• OS can prevent others for gaining access (mutual exclusion).

• OS may or may not be able to take away access (revocation).

• This assumes the kernel operates correctly.

Protecting the Kernel

• The kernel itself must be protected! We’ve seen this stuff already!

• Mechanisms:
• Memory protection.

• Protected mode of operation: kernel vs. user and CPU rings.

• Clock interrupt, so kernel eventually gets control back from processes.

• Note: these mechanisms are all hardware supported.

Thought experiment…

• You have a room with a door.

• You want to protect the room so that only certain people can enter.

• How might you do that? What mechanisms might you employ?

• Things to consider:
• How difficult will it be to verify if someone is / isn't allowed to enter?
• How difficult will be to grant / revoke entry permission? How often will that

happen?

A Formal Model of Protection

• Domain: identity of an actor in the system.
• Could be a user, process, procedure.
• Contains a set of (resource, permission) pairs.

• Resource: object (device, file, data) that requires protection.

• For now, let’s assume that a process executes within the context of a
protection domain.

File X: r, w
File Y: r, w

Domain A

File X: r, x
Domain A: r

Domain B

Note: Domains can
also be resources!

This says that Domain
B can read Domain A’s

protection settings.

A Formal Model of Protection

• Protection goal: if a process requests access to a resource, check the
domain it’s operating within to see if access is allowed.

• We need: some way to represent domains and their permissions.

File X: r, w
File Y: r, w

Domain A

File X: r, x
Domain A: r

Domain B

Protection Matrix

• Possibility: describe all permissions as a matrix.
• Rows are domains

• Columns are resources

• Matrix entry [d, r] contains permissions/rights

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

Is there a problem with storing permissions in a
matrix? (e.g., correctness? other concerns?)

A. Yes – Why?

B. No – Why not?

C. It depends. On what?

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

Efficient Representations

• Matrix idea is too costly

• What should our implementation provide?
• Low storage overhead

• Manageability
• Add permission easily

• Revoke permission easily

• Performance
• Verify permission quickly

Efficient Representations

• Access Control Lists
• For each resource, list (domain, permissions) pairs

• Capability Lists
• For each domain, list (resource, permissions) pairs

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

Access Control Lists

• ACL is associated with resource.

• When process tries to access, check for its domain on the list.

• Analogy: bouncer at the door checking names on a list.
If you re-enter, you need to get checked again.

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

A: r,w
B: ∅

ACL for Y

How do we think ACL’s perform? Why?

Answer Choice Manageability Performance

A Easy to add/revoke permissions Quick to verify

B Easy to add/revoke permissions Slow to verify

C Hard to add/revoke permissions Quick to verify

D Hard to add/revoke permissions Slow to verify

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

A: r,w
B: ∅

ACL for Y

Access Control Lists

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

A: r,w
B: ∅

ACL for Y

• ACL is associated with resource.

• When process tries to access, check for its domain on the list.

• Can be inefficient: must lookup on each access.

• Revocation is easy, just remove from list.

Capability Lists

• Capability list associated with each domain.

• When process tries to access, validate that is has the capability.

• Analogy: process gets a key it can “present” to verify access.

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

X: r,w
Y: r,w

CL for A

How do we think capabilities perform? Why?

Answer Choice Manageability Performance

A Easy to add/revoke permissions Quick to verify

B Easy to add/revoke permissions Slow to verify

C Hard to add/revoke permissions Quick to verify

D Hard to add/revoke permissions Slow to verify

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

X: r,w
Y: r,w

CL for A

Capability Lists

r, w r, w

r, x r

A

B

X Y A B

D
o

m
ai

n
s

Resources

X: r,w
Y: r,w

CL for A

• Capability list associated with each domain.

• When process tries to access, validate that is has the capability.

• Efficient: on access, just produce capability.

• Difficult to revoke.

Which protection mechanism would you expect to
find in a modern OS? Which would you use? Why?

A. Capabilities

B. Access control lists

C. Both

D. Neither (some other mechanism)

Concrete Examples

• When you open a file, you get back a file descriptor. If you get a
descriptor, you can access the file, even if the file is changed:
• The file’s access permissions change.

• The file gets renamed / deleted.

• The FD is a capability!

• At the time you open the file, the permission checks are done. On
Unix systems, this is an ACL check.

Unix File Permissions

• Every file (regular, directory, FIFO, link, etc.) has three sets of bits:
• What can the file’s owner do with the file (exactly one owner)?

• What can users in the file’s group do with the file? (groups contain many users)

• What can everyone else in the world do with the file?

• Examples, from my home dir:

What about…?

• What if we want one group of users to be able to read/write, and
another group to be read-only, and everyone else gets no access?

• What if we want a program to execute with the permissions of
another user?
• Example: you use ‘sudo’ to execute commands as the root user, but you’re not

root. What sorcery is sudo using to make that happen?

Let’s start here…

The setuid / setgid bits.

• The Unix file permissions model has more bits:
• setuid: when executing this program, inherit the owner’s permissions

• setgid: when executing this program, inherit the group’s permissions

• sticky bit: only the owner can rename/delete the file, even if others have
write access (e.g., through group permissions)

• ‘sudo’ is setuid to the ‘root’ user:

Anything sudo does is happening with elevated privileges. It
better be careful when checking authorized users!

What about…?

• What if we want one group of users to be able to read/write, and
another group to be read-only, and everyone else gets no access?

• Suppose Alice is keeping a bibliography file. She wants:
• Bob and Carol to be able to contribute to the bibliography (append entries),

but NOT arbitrarily write (e.g., delete) entries.

• Dave and Erin to be able to read the bibliography.

• Nobody else should access the bibliography (read or write).

What doesn’t work…

• Make bibliography file writable by group.
• Which group, readers or appenders?

• For appenders, write is too much power – it means they can delete too.

• Make bibliography readable by group.
• Now appenders can’t modify the file, only the owner (Alice) can.

Solution

• Alice provides “EditBib” program: only reads/appends

• Alice sets permissions…
• of EditBib program: execute, and setuid (it runs with Alice’s credentials)

• of Bibliography file: read/write only for Alice, nobody else

• EditBib: look at which user is running it, allow/deny permissions accordingly

J. Pelly, “How operating
systems work,” JOS 12(7).
M. Wallace, “The Mac OS,”
JOS 27(3).

Name: Bibliography
Owner: Alice
Perm: rw-------

Process
read
append

main () {
/* program that
opens “bib” and
reads/appends */

Name: EditBib
Owner: Alice
Perm: r-sr-xr-x

exec

Execution of EditBib
Domain: Alice

Alternative: POSIX “facls”

• Extended “file access control list” functionality
• setfacl: change a file’s ACL

• getfacl: read a file’s ACL

• ACL defines a list of checks that determine what sort of access
(read/write/execute) a file access should get, depending on who’s
making the request.

• Flexible and expressive, but not really fun to use: man 5 acl

Summary

• Protection is an enforcement mechanism. Often low-level (e.g.,
checking whether certain bits are set).

• Protection can be expressed in the OS using different structures, with
tradeoffs:
• Access control list: easy to modify/revoke, slower to check

• Capabilities: difficult to modify/revoke, easy to verify

• Unix has several advanced protection mechanisms for files:
setuid/setgid and POSIX facls.

