
Threads and Synchronization
Kevin Webb

Swarthmore College

February 13, 2020

Today’s Goals

• Extend processes to allow for multiple execution contexts (threads)

• Benefits and challenges of concurrency

• Race conditions and atomicity

• Synchronization: hardware, OS, and userspace

Recall: POSIX Shared Memory

• Explicitly request a chunk of
memory to be shared.

int fd = shm_open(name, …);

ftruncate(fd, 8192);

void *ptr = mmap(…, fd, …);

• Only works on shared hardware.

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OSApps that would have used this have
largely switched to using threads.

4 8

Thread Model

• Single process with multiple
copies of execution resources.

• ONE shared virtual address space!
• All process memory shared by every

thread.

• Threads coordinate by sharing
variables (typically on heap)

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

Process

PC

SP

PC

SP

PC

SP

Execution
Context

Shared Memory is… Shared Memory

• These models are equally powerful (for modern thread libraries).

Text

Data

Stack

Text

Data

Stack

OS OS

Heap
Heap

OS4 8

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack
PC

SP

PC

SP

PC

SP

Execution
Context

If inter-process shared memory and threads serve
the same roles, why do we prefer threads?

A. Threads are easier to use. (Why?)

B. Threads provide higher performance. (Why?)

C. Users have more control over thread execution / synchronization.
(How?)

D. Some other reason(s).

Threads vs. Inter-Process Shared Memory

• Threads: shared virtual address space -> LOW context switch overhead

• Threads: implicit sharing, no extra calls necessary (opening FDs)

• Multiple processes: more protection
• ONLY explicitly shared memory is accessible to multiple processes

Thread Abstraction vs. Implementation

• Abstraction: multiple execution contexts in a shared VAS

• Implementation decisions:
• How much should the OS know about threads?

• How much should the userspace process manage about threads?

Implementation Option 1 (N:1)

• OS knows nothing about threads. All execution context stored in
process memory.

• Threading implemented as a userspace library. Userspace code
decides which thread to execute at any given time.

Process OS

PC

SP

Thread Library

Implementation Option 2 (1:1)

• OS fully aware of threads. All execution context stored by kernel.

• OS creates a kernel thread for every new thread and schedules all
threads.

Process OS

PC

SP

Thread Library

PC

SP

PC

SP

Implementation Option 3 (N:M)

• OS supports multiple execution contexts, but a process may have
more threads than kernel execution contexts.

• Userspace code tracks threads and manages mapping them to kernel
execution context.

Process OS

PC

SP

Thread Library

PC

SP

Which threading model would you use in your OS?
Why?

Process OS

PC

SP
Thread Library

Process OS

PC

SP

Thread Library

PC

SP

PC

SP

Process OS

PC

SP

Thread Library

PC

SP

A: (N:1)

B: (1:1)

C: (N:M)

Extending OS Process Model

• Unless we say otherwise, assume 1:1 “kernel thread” model.
• OS is aware of every thread, and schedules them all independently

• Thread == “execution context”

• Before: storage for (one) execution context in PCB
• Registers, PC, SP, kernel stack, etc.

• Now, with threads: PCB contains a collection of threads
• Each thread represents an execution context

Concurrency: Double-Edged Sword

• Benefit: OS will schedule threads concurrently on multiple CPUs

• Benefit: If a process blocks in one thread, in can continue in others

• Problem: OS is now in full control over when threads execute, and it
doesn’t know what your process is trying to do…

As the programmer, you’re at the mercy of the scheduler. If execution
order matters, it’s up to you to ensure that good orderings happen!

All of this is still true
for inter-process
shared memory!

Race Conditions

• Textbook: “A situation where … the outcome of the execution
depends on the particular order in which the [memory accesses take
place].”

• Wikipedia: “A race condition is the behavior of [a system] where the
output is dependent on the sequence or timing of other
uncontrollable events.”

Eliminating Race Conditions

1. Identify orderings that must / must not happen.

2. Apply synchronization constructs to avoid the bad orderings
identified in (1).

For non-trivial problems, (1) is often very difficult because humans
are bad at thinking about concurrency.

Recall Synchronization:

Arranging events to happen
at the same time (or

ensuring that they don’t)

1. Identify the potentially problematic ordering(s).

2. Propose a general solution (don’t need to name specific constructs).

Example 1: Parallel Game of Life

1. Identify the potentially problematic ordering(s).

2. Propose a general solution (don’t need to name specific constructs).

Grid divided into one region per thread. Simulation
in discrete rounds.

Each thread decides, for each cell, whether the cell is
alive or dead in the next round.

Decision for a cell depends on state of neighbor cells.

Example 2: Student Enrollment System

Thread 0:

add_course(Alice, CS45) {

roster = get_course(CS45);

roster.add(Alice);

roster.save_to_DB();

}

Thread 1:

drop_course(Bob, CS45) {

roster = get_course(CS45);

roster.remove(Bob);

roster.save_to_DB();

}

1. Identify the potentially problematic ordering(s).

2. Propose a general solution (don’t need to name specific constructs).

Example 3: Bounded Producer / Consumer

1. Identify the potentially problematic ordering(s).

2. Propose a general solution (don’t need to name specific constructs).

Producer Thread

while (TRUE) {

buf[in] = Produce ();

in = (in + 1)%N;

count++;

}

Consumer Thread

while (TRUE) {

Consume (buf[out]);

out = (out + 1)%N;

count--;

}

Shared Memory

int buf[N], in = 0, out = 0, count = 0;

Synchronization in Practice

• Voluntarily suspend a thread to ensure that events happen (or DON’T
happen) at the same time – eliminate race conditions.

• Our job as the OS:
• Provide abstract interface for applications to request voluntary blocking

• Provide an implementation given the hardware reality

• OS must be involved if we want to block threads (or processes)!

Key Property: Atomicity

• An operation is atomic if the effects of its execution appear to be
uninterruptable.

• Intuition: an atomic operation’s effects are all-or-nothing.

• In our assumed 1:1 thread model, OS will need to provide atomicity
to applications.
• Otherwise, the scheduler’s nondeterminism is chaos to the application.

Suppose count is a global variable, multiple threads increment it: count++;

Is there a race condition here?

A. Yes, there’s a race condition (count++ is not atomic). Why?

B. No, there’s no race condition (count++ is atomic). Why not?

C. Cannot be determined. What’s missing?

Suppose count is a global variable, multiple threads increment it: count++;

Is there a race condition here?

A. Yes, there’s a race condition (count++ is not atomic).

B. No, there’s no race condition (count++ is atomic).

C. Cannot be determined

movl (%edx), %eax // read count value

addl $1, %eax // modify value

movl %eax, (%edx) // write count

How about if compiler implements it as:

incl (%edx) // increment value

How about if compiler implements it as:

NOT atomic. Might
context switch between
any of these instructions.

Depends on the HW
implementation of
instruction. (x86: NO)

Critical Sections

• A section of code, shared by multiple threads, that must be executed
atomically.

• Common pattern:
• read a value

• modify the value

• write the value

• Typically solved by enforcing mutual exclusion to achieve atomicity.

Four Rules for Mutual Exclusion

1. No two threads can execute the critical section at the same time.

2. No thread outside the critical section may prevent others from
entering the critical sections.

3. No thread should have to wait forever to enter the critical section.
(starvation)

4. No assumptions can be made about speeds or number of CPUs.

Sources of Atomicity

• Recall: In our assumed 1:1 thread model, OS will need to provide
atomicity to applications.
• Otherwise, the scheduler’s nondeterminism is chaos to the application.

• What can an OS use to enforce atomicity?

Atomicity Option 1: Disable CPU Interrupts

atomic_increment(x) {

disable_interrupts();

movl (%edx), %eax

addl $1, %eax

movl %eax, (%edx)

enable_interrupts();

}

• Idea: when starting an atomic
operation, disable interrupts.
• Can’t be context switched!

• Re-enable interrupts when done.

Atomicity Option 1: Disable CPU Interrupts

• Idea: when starting an atomic
operation, disable interrupts.
• Can’t be context switched!

• Re-enable interrupts when done.

• Problem: Only works with a
single CPU (one core)
• Interrupts are per-CPU

• Code on other CPUs might be
modifying shared state

atomic_lock(l) {

while (1) {

disable_interrupts();

if (l == LOCKED) {

enable_interrupts();

// block process

continue;

}

l = LOCKED;

enable_interrupts();

}

Atomicity Option 2: Peterson’s Solution

Thread0

flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

Thread1

flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

Shared Memory
int turn;

boolean flag[2] = {FALSE, FALSE};

Atomicity Option 2: Peterson’s Solution

Thread0

flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

Thread1

flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

Shared Memory
int turn;

boolean flag[2] = {FALSE, FALSE};

1. No two threads can execute the critical section at the same time.

2. No thread outside the critical section may prevent others from entering the critical sections.
3. No thread should have to wait forever to enter the critical section. (starvation)

4. No assumptions can be made about speeds or number of CPU’s.

Do nothing in while!

Are there problems with this? Would you use it?

Thread0

flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

Thread1

flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

Shared Memory
int turn;

boolean flag[2] = {FALSE, FALSE};

Atomicity Option 3: Hardware

• Hardware can provide atomic instructions with guaranteed atomicity

• Indivisible instruction that performs multiple tasks

• Examples:
• “Test and Set”

• “Compare and Swap”

• Varies by CPU Instruction Set Architecture

x86: CMPXCHG
Compare and Exchange

Atomic “Test and Set” Instruction

• Retrieve a value from memory and set the value at that location to 1

• C Pseudocode:

int test_and_set(int *addr) {

int result = *addr;

*addr = 1;

return result;

}

All of this happens atomically as part
of one CPU instruction. ISA defines
the specifics.

Using Test and Set

int mutex; // 1 -> locked, 0 -> unlocked

lock_mutex(&mutex);

lock_mutex(int *m) {

int result = test_and_set(m);

if (result == 0)

/* We now hold the lock. */

else

/* Lock held by someone else. */

}

Atomic “Compare and Swap” Instruction

• Check the value at a memory location. If it matches the provided value, change the value
at that memory location.

• C Pseudocode:

int compare_and_swap(int *addr, int check, int new) {

if (*addr == check) {

*addr = new;

return 1; // True – we performed the swap.

} else {

return 0; // False – we did not swap.

}

}

Using Compare and Swap

int mutex; // 1 -> locked, 0 -> unlocked

lock_mutex(&mutex);

lock_mutex(int *m) {

int result = compare_and_swap(m, 0, 1);

if (result)

/* We now hold the lock. */

else

/* Lock held by someone else. */

}

Implementing Atomic Instructions
Bus: a collection of wires
carrying one logical value

Connecting CPU(s) to memory:
three busses
• Address
• Data
• Control

Busses are shared by all the
components they connect

Only one component can write
to the bus at a time, so it must
be lockable in hardware!

Implementing Atomic Instructions
Normal instruction
(e.g., memory write):

lock buses
place dest addr on address bus
place value on data bus
place write signal on control bus
unlock buses

Implementing Atomic Instructions
Atomic instruction
(e.g., compare and swap):

lock buses
perform normal read instruction
perform compare instruction
perform normal write (if needed)
unlock buses

Synchronization Constructs

• You’ve mostly seen/used the pthreads library:
• mutex locks, condition variables, barriers, (maybe) readers/writer locks

• OS synchronization primitives:
• semaphores, mutex locks, spin locks

Building Locks

int mutex; // 1 -> locked, 0 -> unlocked

lock_mutex(&mutex);

lock_mutex(int *m) {

while (1) {

int result = compare_and_swap(m, 0, 1);

if (result) {

break;

}

...

}

return; /* Lock is acquired. */

}

Semantics: user calls lock_mutex.
Upon return, user has acquired the lock.

If the lock can’t be acquired, calling process must wait.

Building Locks

int mutex; // 1 -> locked, 0 -> unlocked

lock_mutex(&mutex);

lock_mutex(int *m) {

while (1) {

int result = compare_and_swap(m, 0, 1);

if (result) {

break;

}

/* What should go here? */

}

return; /* Lock is acquired. */

}

A. Nothing

B. Wait a short time.

C. Wait on a queue.

D. Something else.

Lock Types

Spin Lock

• Keep trying to acquire lock
without ever waiting

• Great when you are certain that
critical section is short

• NO context switch overhead

Mutex Lock

• Try to acquire lock. If it’s already
held, block process, add to queue

• Used when waiting is potentially
long (or unknown duration)

Building Locks

int mutex; // 1 -> locked, 0 -> unlocked

lock_mutex(&mutex);

lock_mutex(int *m) {

while (1) {

int result = compare_and_swap(m, 0, 1);

if (result) {

break;

}

/* What should go here? */

}

return; /* Lock is acquired. */

}

A. Nothing

B. Wait a short time.

C. Wait on a queue.

D. Something else.

Spin Lock

Mutex Lock

Semaphores

• Named after railway signals by Edsger Dijkstra

• Synchronization variable that keeps a count of
how many users can acquire it.

• Example: suppose you have five study rooms:

Semaphore Count:

Study rooms:

(# available rooms)

Semaphores

• Observation: if a semaphore’s count never goes above one -> mutex

• Example: suppose you have five study rooms:

Semaphore Count:

Study rooms:

(# available rooms)

Semaphore Count:

Study rooms:

Semaphore Interface

sem s = init_sem(n); // declare & initialize

wait (sem s) // Executes atomically

decrement s;

if s < 0, block thread (and add it to a queue);

signal (sem s) // Executes atomically

increment s;

if blocked threads, unblock (any) one of them;

Semaphore Implementation (One Option)

sem s {

int count;

spin_lock l;

queue waiters;

}

wait (sem *s) {

lock(&s->l);

s->count -= 1;

if (s->count < 0)

/* Add current process to waiters, unlock, and block process. */

unlock(&s->l);

}

signal (sem *s) {

lock(&s->l);

s->count += 1;

if (/* Process(es) are waiting*/)

/* Unblock one queued waiter. */

unlock(&s->l);

}

Should a process be able to check beforehand
whether wait() will cause it to block?
sem s {

int count;

spin_lock l;

queue waiters;

}

wait (sem *s) {

lock(&s->l);

s->count -= 1;

if (s->count < 0)

/* Add current process to waiters, unlock, and block process. */

unlock(&s->l);

}

signal (sem *s) {

lock(&s->l);

s->count += 1;

if (/* Process(es) are waiting*/)

/* Unblock one queued waiter. */

unlock(&s->l);

}

A. Yes – how?
B. No – why not?
C. It depends – on what?

Higher-Level Constructs

• If the OS provides atomicity with locks and
semaphores, others can build on top

• Example: pthread library – barrier (N
process must all arrive before any proceed)

barrier {

sem = init_sem(0);

lock = init_lock();

int count = 0;

int target = N;
}

barrier_wait(barrier *b) {

lock(&b->lock);

b->count += 1;

unlock(&b->lock);

if (b->count == b->target) {

signal(b->sem); /* wake one */

}

wait(b->sem);

signal(b->sem); /* pass it on */

}
Note: this barrier implementation can only
be used once!

Beyond CS 31

• In 31, you saw the pthreads library.

• So far, we’ve seen the OS support it by providing atomic primitives.

• Up next:
1. Monitors: built-in language support for automatic synchronization

2. Optimistic concurrency: concurrency without locking

3. Mixing signals and threads

Monitors

• Typically provided in object-oriented languages (Java, C#)

• Define an object as a monitor:
• object’s methods are automatically treated as critical sections

• complier adds implicit lock/unlock to beginning/end of every method

• only one thread at a time is allowed to execute “in the monitor”

Instance of a Monitor Object

variables, methods, etc.

Waiting Area

Compiler automatically adds thread waiting area.

Monitors

• Typically provided in object-oriented languages (Java, C#)

• Define an object as a monitor:
• object’s methods are automatically treated as critical sections

• complier adds implicit lock/unlock to beginning/end of every method

• only one thread at a time is allowed to execute “in the monitor”

Instance of a Monitor Object

variables, methods, etc.

Waiting Area

Threads arrive to use the object. Only one is allowed to use it at a time.

Monitors

• Typically provided in object-oriented languages (Java, C#)

• Define an object as a monitor:
• object’s methods are automatically treated as critical sections

• complier adds implicit lock/unlock to beginning/end of every method

• only one thread at a time is allowed to execute “in the monitor”

• For some tasks, adding a keyword is all you need!

Easy Example: linked lists

• Suppose you’re implementing a linked list class in Java, and it’s allowed to grow unbounded.

public class LinkedList {

public synchronized void add(int value) {

/* Code to add new LL node. */

}

public synchronized void remove(int value) {

/* Code to find and remove LL node. */

}

}

synchronized:

automatically associate a
mutex with every instance
of this class.

Acquire the mutex before
executing any synchronized
method.

Add one keyword, compiler adds all the locking for you.
No worries about multiple threads modifying the list simultaneously!

Monitors

• Some problems still require more explicit synchronization.

• Solution: give users condition variables. They work like the pthread
variety you (maybe) saw in CS 31:
• wait(cond):

• signal(cond):

The interface looks the same as
semaphores. DON’T BE FOOLED!

Monitors

• Some problems still require more explicit synchronization.

• Solution: give users condition variables. They work like the pthread
variety you (maybe) saw in CS 31:
• wait(cond): release mutex (implicit for monitors) and block calling

thread until another thread signals the condition variable.

• signal(cond):

The interface looks the same as
semaphores. DON’T BE FOOLED!

Monitors

• Some problems still require more explicit synchronization.

• Solution: give users condition variables. They work like the pthread
variety you (maybe) saw in CS 31:
• wait(cond): release mutex (implicit for monitors) and block calling

thread until another thread signals the condition variable.

• signal(cond): (must be holding mutex). wake up one blocked thread
and then release the mutex and exit the monitor.

The interface looks the same as
semaphores. DON’T BE FOOLED!

Unlike the semaphore routines of the same names, condition
variables DO NOT count the number of times they’ve been called.
If nobody is waiting, signal does nothing!

How far will these code blocks execute?

Answer choice Semaphore blocks on… Condition variable blocks on…

A. First wait() First wait()

B. Second wait() First wait()

C. Second wait() Second wait()

D. (other code) Second wait()

Semaphore

semaphore s (count = 0)

signal(s)

wait(s)

wait(s)

(other code)

Condition variable

cond_var c

signal(c)

wait(c)

wait(c)

(other code)

Bounded Producer / Consumer

Producer Thread
while (TRUE) {

PutItem(Produce());

}

Consumer Thread
while (TRUE) {

Consume (GetItem());

}

Monitor Object: Instance Variables & Methods

int buf[N], in = 0, out = 0, count = 0;

cond spot_avail, item_avail;

synchronized GetItem () {

int item;

if (count == 0)

wait (item_avail);

item = buf[out];

out = (out + 1)%N;

count--;

signal (spot_avail);

return (item);

}

synchronized PutItem (int item) {

if (count == N)

wait (spot_avail);

buf[in] = item;

in = (in + 1)%N;

count++;

signal (item_avail);

}

Using the object is still easy:
synchronization hidden.

Beyond CS 31

• In 31, you saw the pthreads library.

• So far, we’ve seen the OS support it by providing atomic primitives.

• Up next:
1. Monitors: built-in language support for automatic synchronization

2. Optimistic concurrency: concurrency without locking

3. Mixing signals and threads

Optimistic Concurrency

• Traditional synchronization is pessimistic
• assume the worst case will happen (context switch at inopportune time)

• prevent it from happening by locking in advance to protect critical section

• Observation: if multiple threads aren’t trying to write, the locking is
only getting in the way.

• Example: Wikipedia
• Lots of pages, anyone can edit them. Most are NOT being edited right now.

Optimistic Concurrency

• Instead of locking, make copies of data and swap the pointer to write.

struct data {

int version; /* for writes */

int value;

char name[100];

…

}

/* Shared by multiple threads. */

struct data *d

version: value:

name:
…

Any thread that wants to read the shared data can do so.

Optimistic Concurrency

• Instead of locking, make copies of data and swap the pointer to write.

/* Shared by multiple threads. */

struct data *d

/* Private copy for writer. */

struct data *d_copy

version: value:

name:
…

175

B o b

If a thread wants to write, it first makes a copy of the whole data & increments version.

version: value:

name:
…

176

B o b

Optimistic Concurrency

• Instead of locking, make copies of data and swap the pointer to write.

/* Shared by multiple threads. */

struct data *d

/* Private copy for writer. */

struct data *d_copy

version: value:

name:
…

175

B o b

Writer thread can update whatever it wants in private copy.

version: value:

name:
…

226

A l i c e

Optimistic Concurrency

• Instead of locking, make copies of data and swap the pointer to write.

/* Shared by multiple threads. */

struct data *d

/* Private copy for writer. */

struct data *d_copy

version: value:

name:
…

175

B o b

When it’s done, atomically swap the original pointer, IF version is expected value.

version: value:

name:
…

226

A l i c e

This is where compare and swap-like functionality shines! In one atomic operation: compare
the versions, and if no other thread has modified the structure (changed the version before
you), atomically swap the pointers.

Complication: concurrent changes

• Instead of locking, make copies of data and swap the pointer to write.

/* Shared by multiple threads. */

struct data *d

/* Private copy for writer. */

struct data *d_copy

version: value:

name:
…

316

D a v e

When versions indicate another thread has written, must handle how to proceed!

version: value:

name:
…

226

A l i c e

Works best when writes are scarce.
Commonly used in database transactions.

Beyond CS 31

• In 31, you saw the pthreads library.

• So far, we’ve seen the OS support it by providing atomic primitives.

• Up next:
1. Monitors: built-in language support for automatic synchronization

2. Optimistic concurrency: concurrency without locking

3. Mixing signals and threads

Recall: Signals

Text

Data

Stack

Process

OS

Heap

OS
Process’s Pending Signals: 10, 15

Process’s Signal Actions: 10 -> func

• Data transfer: send one integer.

• Synchronization: OS marks signals as pending, delivers
signals when it feels like it (when scheduler chooses
target)

• Used for:
• terminating processes
• asking long-running processes to do maintenance
• debugging
• OS sending simple message to process (e.g., SIGPIPE)

Signals & Threads

OS
Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions: 10 -> func

• Signals are delivered to a process (sent to a PID)

• But…now a process has multiple, independently
scheduled execution contexts.

• Which should handle the signal?

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

Process

PC

SP

PC

SP

PC

SP

Execution
Context

Which thread should get the signal? Why?

OS
Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions: 10 -> func

A. The signal should always go to the first/main
thread.

B. The OS should choose one thread to handle
all subsequent signals.

C. The user should choose one thread to
handle all signals.

D. The signal should go to any available thread.

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

Process

PC

SP

PC

SP

PC

SP

Execution
Context

Take Care Mixing Signals and Threads!

• You might end up interrupting a thread you didn’t want to interrupt.

• If you’re lucky: all threads are doing the same thing, so any of them
can handle a signal.

• Otherwise: you can disable signals on a per-thread basis.
• Tell all threads but one to ignore all signals.

• Designate one thread to sit around and only wait for signals: sigwait()

Summary

• We extended our process model:
• Process is state (PCB), a virtual address space, and open files

• Process has multiple execution contexts, 1:1 with threads (most OSes)

• Concurrency gives nice performance, but leads to race conditions.

• Atomicity helps to solve races, but we want atomic hardware instructions.

• OS provides low-level synchronization primitives, which serve as basis for
higher-level libraries, language support (monitors) and other abstractions.

