
Inter-Process
Communication (IPC)

Kevin Webb

Swarthmore College

February 6, 2020

Today’s Goals

• Discuss general coordination between executing processes.
• Why and how it happens.

• Describe common IPC design models.

• Evaluate common IPC mechanisms and their tradeoffs.

• For now: processes. Much of this is applicable to threads too.

Why is it important for processes to be able
to communicate?
A. Performance

B. Modularity

C. Fault tolerance

D. Some other reason(s) (such as?)

E. More than one of these (which?)

Concurrency

• Single CPU: logical concurrency

• Multiple CPU cores (commonly 4-16): still WAY more processes

• With multiple cores (more hardware), performance is clearly
important. There are other benefits too though!

If one CPU core can run a program at a rate of X,
how quickly will the program run on two cores?

A. Slower than one core (<X)

B. The same speed (X)

C. Faster than one core, but not double (X-2X)

D. Twice as fast (2X)

E. More than twice as fast(>2X)

Non-Performance Benefits

• Modularity: divide a task among specialized processes
• develop / debug / test independently

• reusable processes for other tasks

• Fault tolerance: if one process fails, user can interact with another
(typically more distributed systems than OS…)

• I/O and blocking: if one process performs I/O and blocks, other(s) can
keep executing.

Inter-Process Communication Models

• Common design patterns for coordinating processes (or threads).

1. Pipeline model:

Example: $ ls | sort | grep py

P1 P2 PN…

“Unix philosophy”: Do one thing, and do it well. (Modularity)
Result: lots of small utilities chained together at the command line.

Inter-Process Communication Models

2. Producer / Consumer model:

Example: media player
• Producer: read file from disk into buffer

• Consumer: decode file and send to output device

Producer Consumer3 5 4 92

in

out
shared data buffer

Each side can perform I/O and block independently of the other.

* Common with

threads too.

Inter-Process Communication Models

3. Client / Server model:

Example: Most Internet services
• Server: wait for clients to request service, satisfy requests when they do

• Client: connect to server, make request(s), disconnect when done

Each party (client and server) is specialized. (Modularity)
Server can do work for some clients while others are idle. (Independent I/O)

S

C1 C2 C3

Inter-Process Communication Models

4. Work Queue model:
(a.k.a boss/worker or master/worker)

Examples:
• Folding@home: distributed biochemistry research

• Internet server (web, email, etc.): tasks are client requests

Each worker can perform I/O and block independently of the other.
Each worker can fail independently without stopping the system.

Pool of worker processes (or threads)

Controller w/ queued tasks:

* Common with

threads too.

Inter-Process Communication Models

5. Divide and Conquer model:

Example: Large scientific computing tasks
• Weather / earthquake / fluid dynamics simulations

• CS 31: Your parallel game of life lab…

Each piece can execute concurrently. (Performance)

One
process:

Four
processes:

* Common with

threads too.

Many Other Models!

• Peer-to-peer: processes communicate directly with peer processes

• Staged Event-Driven Architecture (SEDA)

• Asymmetric Multi-Process
Event-Driven (AMPED)

Requirements

• Regardless of model, communication requires:

1. Data transfer: move data between processes

2. Synchronization: control execution order
• arrange events to happen at the same time (or ensure that they don’t)

• Example: P1 prints “ABC”, P2 prints “DEF” to shared terminal
• Without synchronization: ABCDEF, ADBECF, ABDECF, ADEBCF, …

• With synchronization (atomicity): ABCDEF or DEFABC

Communication Classes

Shared Memory

• OS maps the same physical
memory frame(s) into the VAS of
multiple processes.

• Interface: memory access (read
or set variables in memory).

• Synch: explicit synchronization
types (mutex, condition var, etc.)

Message Passing

• Processes ask OS to transfer data
to/from other processes.

• Interface: make system calls to
send() data to or recv() data
from other process.

• Synch: implicit, based on ordering
of send() & recv() calls.

Which feels more natural to you? Which do
you think is most common? Why?

More Natural Most Common

A Shared Memory Shared Memory

B Shared Memory Message Passing

C Message Passing Shared Memory

D Message Passing Message Passing

Shared memory: OS maps the same physical memory frame(s) into the VAS of multiple processes.

Message passing: Processes ask OS to transfer data to/from other processes.

Going Forward…

• Present an IPC abstraction and how it works

• Whether it’s built using shared memory or message passing
(or either)

• Where it’s used (e.g., single machine vs. over a network)

• When it’s used (e.g., example applications)

POSIX Shared Memory (similar alternative: SysV shared memory)

• Explicitly request a chunk of
memory to be shared.

int fd = shm_open(name, …);

ftruncate(fd, 8192);

void *ptr = mmap(…, fd, …);

• Only works on shared hardware.

• I could find no app examples.

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

“Portable Operating System Interface”, also the P in Pthreads

Apps that would have used this have
largely switched to using threads.

4 8

POSIX Shared Memory (similar alternative: SysV shared memory)

• Explicitly request a chunk of
memory to be shared.

• Data transfer: read/write shared
memory

• Synchronization: explicit
variables (mutex locks, condition
variables, barriers, etc.)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

“Portable Operating System Interface”, also the P in Pthreads

4 8

Implicit Shared Memory: fork()

• When new process is created, it
shares a (read only) copy of its
parent’s memory.

• Copy-on-write (COW) – only make
a private copy of memory when
process attempts to write. (Why?)

• Only works on shared hardware.

• Used frequently (every process
creation!), e.g., shell commands.

Text

Data

Stack

Child

OS

Heap

Text

Data

Stack

Parent

OS

Heap

fork()

Usually isn’t used for long-term communication,
but it does cause shared memory.

Pipes

• Create two file descriptors – one for
input, one for output.

int pipefds[2];

pipe(pipefds);

fork(); // Child inherits descriptors

// One process reads from pipefds[0]

// One process writes to pipefds[1]

• Only works on shared hardware
(relies on fork behavior)

0

1

2

7

8

stdin stdout stderr

…
Descriptor Table

Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example: $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

Shell Process Descriptor Table

“Take the output of ls and send
it as the input to sort.”

Note: ls writes to stdout, and
sort reads from stdin.

Create a pipe with descriptors
for reading (7) and writing (8).

Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example: $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

Fork two child processes:
one for ls, one for sort.

Child: soon-to-be ls

Child: soon-to-be sort

fork()

Shell Process Descriptor Table

Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example: $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

Parent no longer needs the pipe.
Close it.

Child: soon-to-be ls

Child: soon-to-be sort

fork()

Shell Process Descriptor Table

Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example: $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

ls only needs to write, so it closes the
read side. Sort needs only the read side.

Child: soon-to-be ls

Child: soon-to-be sort

Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example: $ ls | sort

ls: dup2(8, 1);

sort: dup2(7, 0);

0

1

2

7

8

stdin stderr

…

0

1

2

7

8

stdout stderr

…

Use dup2 to adjust FDs: close second FD
and put first in its spot.

Child: soon-to-be ls

Child: soon-to-be sort

Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example: $ ls | sort

0

1

2

7

8

stdin stderr

…

0

1

2

7

8

stdout stderr

…
Now, ls can printf or write to FD 1 just like
it always does and output goes to pipe.

Likewise, sort can read from 0 like usual.

Child: soon-to-be ls

Child: soon-to-be sort

How would you implement pipes?

A. Shared memory (how? and why?)

B. Message passing (how? and why?)

Named Pipes (a.k.a. FIFOs)

• Mechanism: same as pipe

• Does NOT rely on FD inheritance
from process forking.

mkfifo(path, …);

open(path, …);

• Only works on shared hardware

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

Process 1 (writer) – Descriptor Table

Process 2 (reader) - Descriptor Table

Represented in
file system.

Signals (UNIX)

• Coarse notifications: one integer

• Generates a “software interrupt”
for target process

• Issued using kill() system call

• Only works on shared hardware

Signal Name Number Description

SIGHUP 1 Hangup (POSIX)

SIGINT 2 Terminal interrupt (ANSI)

SIGBUS 7 BUS error (4.2 BSD)

SIGFPE 8 Floating point exception (ANSI)

SIGKILL 9 Kill(can't be caught or ignored) (POSIX)

SIGUSR1 10 User defined signal 1 (POSIX)

SIGSEGV 11 Invalid memory segment access (ANSI)

SIGUSR2 12 User defined signal 2 (POSIX)

SIGPIPE 13
Write on a pipe with no reader, Broken pipe
(POSIX)

SIGALRM 14 Alarm clock (POSIX)

SIGTERM 15 Termination (ANSI)

SIGCHLD 17
Child process has stopped or exited, changed
(POSIX)

SIGCONT 18 Continue executing, if stopped (POSIX)

SIGSTOP 19
Stop executing(can't be caught or ignored)
(POSIX)

SIGPROF 27 Profiling alarm clock (4.2 BSD)

SIGWINCH 28 Window size change (4.3 BSD, Sun)

Signals (UNIX)

• OS keeps track of pending signals and signal actions for each process.

• Pending: signal has been “sent” to this process. (bit 0->1)
• Signals are NOT queued. Each signal number is either pending or not.

• Action: what to do in response. Each signal has a default, but you can
override (most of) them. Choices: Default, Ignore, or Function

• Kernel checks for, delivers pending signals when resuming a process.

Signals (UNIX)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS
Process 2’s Pending Signals:

Process 2’s Signal Actions:

Signals (UNIX)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

signal(SIGUSR1, func);

…

(P2 gets context

switched off CPU)

Process 2’s Pending Signals:

Process 2’s Signal Actions: 10 -> func

Signals (UNIX)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

…

kill(process 2’s pid, SIGUSR1);

…

system call

Process 2’s Pending Signals: 10

Process 2’s Signal Actions: 10 -> func

Signals (UNIX)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

…

kill(process 2’s pid, SIGUSR1);

…

kill(process 2’s pid, SIGTERM);

…

system call

Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions: 10 -> func

Signals (UNIX)

Text

Data

Stack

Process 2

OS

Heap

OS
Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions: 10 -> func

When process 2 resumes executing, deliver the signals.

(Don’t count on any particular ordering.
For example: numerical order.)

For handling 10 (SIGUSR1), resume process by invoking the
func() function.

For handling 15 (SIGTERM), use the default routine
(terminate process).

Signals (UNIX)

Text

Data

Stack

Process 2

OS

Heap

OS
Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions: 10 -> func

• Data transfer: send one integer.

• Synchronization: OS marks signals as pending, delivers
signals to process when scheduler chooses it

• Used for:
• terminating processes
• asking long-running processes to do maintenance
• debugging
• OS sending simple message to process (e.g., SIGCHLD, SIGPIPE)

Going Forward…

• Present an IPC abstraction and how it works

• Whether it’s built using shared memory or message passing
(or either)

• Where it’s used (e.g., single machine vs. over a network)

• When it’s used (e.g., example applications)

Communicating Across Machines

• Almost always some form of message passing.

• OS Kernel buffers message data.

• Typically used over a network, but also works on a single machine.
• client-server model VERY common, both local and across network

• Example: sound server on Linux desktop

Sockets

• Abstraction: socket() descriptor
• write data to one side of socket
• read it at other

• Low-level data transfer interface
• send(fd, …) and recv(fd, …)

• Most commonly (TCP):
• one side listen()s for incoming connection
• other side connect()s to listener

Descriptor Table

0

1

2

7

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

The subsequent cross-machine
mechanisms we’ll look at build
upon sockets to provide higher-
level abstractions.

Sockets

• Abstraction: socket() descriptor
• write data to one side of socket

• read it at other

• Low-level data transfer interface
• send(fd, …) and recv(fd, …)

• Data transfer: copy data to kernel, kernel will transmit (if necessary)

• Synchronization:?

Descriptor Table

0

1

2

7

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

Sockets

• Abstraction: socket() descriptor
• write data to one side of socket

• read it at other

• Low-level data transfer interface
• send(fd, …) and recv(fd, …)

• Data transfer: copy data to kernel, kernel will transmit (if necessary)

• Synchronization: kernel blocks process if operation can’t be performed

Descriptor Table

0

1

2

7

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

Message Passing: Buffering

• Applies to pipes, sockets, anything built on top of them, and message
passing in general.

• Problem: Storing data that has been sent but not yet asked for by the
receiver.

• Buffer status dictates synchronization:
• buffer empty: read/recv will force process to wait (block)

• buffer full: write/send will force process to wait (block)

Buffering

Network
“series of tubes”

https://en.wikipedia.org/wiki/Series_of_tubes

https://en.wikipedia.org/wiki/Series_of_tubes

Buffering

P1 P2

kernel kernel
Network

Buffering

P1 P2

kernel kernel

send(to, data) recv(from, data)

P1 wants to send data to P2.

Network

Buffering

P1 P2

kernel kernel

send(to, data) recv(from, data)

TCP/IP Socket Buffer TCP/IP Socket Buffer

All send() and recv() do is copy data to/from the OS.

OS will format data and send it using the network device when it can.

Network

Buffering

P1 P2

kernel kernel

send(to, data) recv(from, data)

TCP/IP Socket Buffer TCP/IP Socket Buffer

Kernel’s buffers have finite storage space!

If the buffer is empty, OS will mark the receiver
process as blocked – can’t read data before it arrives!

If sender fills buffer, OS will mark the process as
blocked – can’t be scheduled until space is free.

Network

Buffering

P1 P2

kernel kernel
Network

“series of tubes”

send(to, data) recv(from, data)

TCP/IP Socket Buffer TCP/IP Socket Buffer

Kernel’s buffers have finite storage space!

If the buffer is empty, OS will mark the receiver
process as blocked – can’t read data before it arrives!

If sender fills buffer, OS will mark the process as
blocked – can’t be scheduled until space is free.

This behavior is (commonly) the synchronization
mechanism for message passing!

Note: Deadlock is still easily possible:

P1 – recv()
P2 – recv()

“Message Passing Interface” (MPI)

• Typically used in scientific computing tasks / super computers.

• Each machine given a numeric “rank” ID by MPI library.

• Can send/recv like sockets by specifying rank of recipient.

• Can also broadcast, reduce values, add barriers, and many others

Details of data transfer and synchronization vary according to MPI
implementation, available hardware, and configuration.

Remote Procedure Call (RPC)

• Works like a function call, but via
message passing (e.g., over the network).

• Data transfer: name of function and
parameters sent via socket.

• Synchronization: caller waits for server to
return back to it.

• Used frequently:
• NFS
• Web services

Image source:
https://technet.microsoft.com/en-us/library/cc738291(v=ws.10).aspx

https://technet.microsoft.com/en-us/library/cc738291(v=ws.10).aspx

Distributed Shared Memory (DSM)

• Multiple machines conspire to make it look like they have a giant pool
of shared memory.

• OS intercepts memory accesses, sends to other nodes (if needed)

• Not much commercial success.

Summary

• Communication requires data transfer and synchronization.

• Common models for structuring the communication.
• (e.g., producer/consumer, client/server, and others)

• Many abstractions for performing communication
• Broad classifications: shared memory vs. message passing

