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Today’s Goals

• Discuss general coordination between executing processes.
• Why and how it happens.

• Describe common IPC design models.

• Evaluate common IPC mechanisms and their tradeoffs.

• For now: processes.  Much of this is applicable to threads too.



Why is it important for processes to be able 
to communicate?
A. Performance

B. Modularity

C. Fault tolerance

D. Some other reason(s) (such as?)

E. More than one of these (which?)



Concurrency

• Single CPU: logical concurrency

• Multiple CPU cores (commonly 4-16): still WAY more processes

• With multiple cores (more hardware), performance is clearly 
important.  There are other benefits too though!



If one CPU core can run a program at a rate of X, 
how quickly will the program run on two cores?

A. Slower than one core (<X)

B. The same speed (X)

C. Faster than one core, but not double (X-2X)

D. Twice as fast (2X)

E. More than twice as fast(>2X)



Non-Performance Benefits

• Modularity: divide a task among specialized processes
• develop / debug / test independently

• reusable processes for other tasks

• Fault tolerance: if one process fails, user can interact with another 
(typically more distributed systems than OS…)

• I/O and blocking: if one process performs I/O and blocks, other(s) can 
keep executing.



Inter-Process Communication Models

• Common design patterns for coordinating processes (or threads).

1. Pipeline model:

Example:  $ ls | sort | grep py

P1 P2 PN…

“Unix philosophy”: Do one thing, and do it well.  (Modularity)
Result: lots of small utilities chained together at the command line.



Inter-Process Communication Models

2. Producer / Consumer model:

Example: media player
• Producer: read file from disk into buffer

• Consumer: decode file and send to output device

Producer Consumer3 5 4 92

in

out
shared data buffer

Each side can perform I/O and block independently of the other.

* Common with 

threads too.



Inter-Process Communication Models

3. Client / Server model:

Example: Most Internet services
• Server: wait for clients to request service, satisfy requests when they do

• Client: connect to server, make request(s), disconnect when done

Each party (client and server) is specialized.  (Modularity)
Server can do work for some clients while others are idle. (Independent I/O)

S

C1 C2 C3



Inter-Process Communication Models

4. Work Queue model:
(a.k.a boss/worker or master/worker)

Examples:
• Folding@home: distributed biochemistry research

• Internet server (web, email, etc.): tasks are client requests

Each worker can perform I/O and block independently of the other.
Each worker can fail independently without stopping the system.

Pool of worker processes (or threads)

Controller w/ queued tasks:

* Common with 

threads too.



Inter-Process Communication Models

5. Divide and Conquer model:

Example: Large scientific computing tasks
• Weather / earthquake / fluid dynamics simulations

• CS 31: Your parallel game of life lab…

Each piece can execute concurrently. (Performance)

One 
process:

Four 
processes:

* Common with 

threads too.



Many Other Models!

• Peer-to-peer: processes communicate directly with peer processes

• Staged Event-Driven Architecture (SEDA)

• Asymmetric Multi-Process
Event-Driven (AMPED) 



Requirements

• Regardless of model, communication requires:

1. Data transfer: move data between processes

2. Synchronization: control execution order
• arrange events to happen at the same time (or ensure that they don’t)

• Example: P1 prints “ABC”, P2 prints “DEF” to shared terminal
• Without synchronization: ABCDEF, ADBECF, ABDECF, ADEBCF, …

• With synchronization (atomicity): ABCDEF or DEFABC



Communication Classes

Shared Memory

• OS maps the same physical 
memory frame(s) into the VAS of 
multiple processes.

• Interface: memory access (read 
or set variables in memory).

• Synch: explicit synchronization 
types (mutex, condition var, etc.)

Message Passing

• Processes ask OS to transfer data 
to/from other processes.

• Interface: make system calls to 
send() data to or recv() data 
from other process.

• Synch: implicit, based on ordering 
of send() & recv() calls.



Which feels more natural to you?  Which do 
you think is most common?  Why?

More Natural Most Common

A Shared Memory Shared Memory

B Shared Memory Message Passing

C Message Passing Shared Memory

D Message Passing Message Passing

Shared memory: OS maps the same physical memory frame(s) into the VAS of multiple processes.

Message passing: Processes ask OS to transfer data to/from other processes.



Going Forward…

• Present an IPC abstraction and how it works

• Whether it’s built using shared memory or message passing
(or either)

• Where it’s used (e.g., single machine vs. over a network)

• When it’s used (e.g., example applications)



POSIX Shared Memory  (similar alternative: SysV shared memory)

• Explicitly request a chunk of 
memory to be shared.

int fd = shm_open(name, …);

ftruncate(fd, 8192);

void *ptr = mmap(…, fd, …);

• Only works on shared hardware.

• I could find no app examples.

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

“Portable Operating System Interface”, also the P in Pthreads

Apps that would have used this have 
largely switched to using threads.
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POSIX Shared Memory  (similar alternative: SysV shared memory)

• Explicitly request a chunk of 
memory to be shared.

• Data transfer: read/write shared 
memory

• Synchronization: explicit 
variables (mutex locks, condition 
variables, barriers, etc.)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

“Portable Operating System Interface”, also the P in Pthreads

4 8



Implicit Shared Memory: fork()

• When new process is created, it 
shares a (read only) copy of its 
parent’s memory.

• Copy-on-write (COW) – only make 
a private copy of memory when 
process attempts to write.  (Why?)

• Only works on shared hardware.

• Used frequently (every process 
creation!), e.g., shell commands.

Text

Data

Stack

Child

OS

Heap

Text

Data

Stack

Parent

OS

Heap

fork()

Usually isn’t used for long-term communication, 
but it does cause shared memory.



Pipes

• Create two file descriptors – one for 
input, one for output.

int pipefds[2];

pipe(pipefds);

fork(); // Child inherits descriptors

// One process reads from pipefds[0]

// One process writes to pipefds[1]

• Only works on shared hardware 
(relies on fork behavior)

0

1

2

7

8

stdin stdout stderr

…
Descriptor Table



Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example:  $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

Shell Process Descriptor Table

“Take the output of ls and send 
it as the input to sort.”

Note: ls writes to stdout, and 
sort reads from stdin.

Create a pipe with descriptors 
for reading (7) and writing (8).



Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example:  $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

Fork two child processes:
one for ls, one for sort.

Child: soon-to-be ls

Child: soon-to-be sort

fork()

Shell Process Descriptor Table



Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example:  $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

0
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2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

Parent no longer needs the pipe.
Close it.

Child: soon-to-be ls

Child: soon-to-be sort

fork()

Shell Process Descriptor Table



Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example:  $ ls | sort

0

1

2

7

8

stdin stdout stderr

…

0

1

2

7

8

stdin stdout stderr

…

ls only needs to write, so it closes the 
read side.  Sort needs only the read side.

Child: soon-to-be ls

Child: soon-to-be sort



Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example:  $ ls | sort

ls:   dup2(8, 1);

sort: dup2(7, 0);

0

1

2

7

8

stdin stderr

…

0

1

2

7

8

stdout stderr

…

Use dup2 to adjust FDs: close second FD 
and put first in its spot.  

Child: soon-to-be ls

Child: soon-to-be sort



Pipes and the Shell
• Create pipe, fork() processes,

clean up FDs with dup2()

• Example:  $ ls | sort

0

1

2

7

8

stdin stderr

…

0

1

2

7

8

stdout stderr

…
Now, ls can printf or write to FD 1 just like 
it always does and output goes to pipe.

Likewise, sort can read from 0 like usual.

Child: soon-to-be ls

Child: soon-to-be sort



How would you implement pipes?

A. Shared memory (how? and why?)

B. Message passing (how? and why?)



Named Pipes (a.k.a. FIFOs)

• Mechanism: same as pipe

• Does NOT rely on FD inheritance 
from process forking.

mkfifo(path, …);

open(path, …);

• Only works on shared hardware

0
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8

stdin stdout stderr

…

0
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2

7

8

stdin stdout stderr

…

Process 1 (writer) – Descriptor Table

Process 2 (reader) - Descriptor Table

Represented in
file system.



Signals (UNIX)

• Coarse notifications: one integer

• Generates a “software interrupt” 
for target process

• Issued using kill() system call

• Only works on shared hardware

Signal Name Number Description

SIGHUP 1 Hangup (POSIX)

SIGINT 2 Terminal interrupt (ANSI)

SIGBUS 7 BUS error (4.2 BSD)

SIGFPE 8 Floating point exception (ANSI)

SIGKILL 9 Kill(can't be caught or ignored) (POSIX)

SIGUSR1 10 User defined signal 1 (POSIX)

SIGSEGV 11 Invalid memory segment access (ANSI)

SIGUSR2 12 User defined signal 2 (POSIX)

SIGPIPE 13
Write on a pipe with no reader, Broken pipe 
(POSIX)

SIGALRM 14 Alarm clock (POSIX)

SIGTERM 15 Termination (ANSI)

SIGCHLD 17
Child process has stopped or exited, changed 
(POSIX)

SIGCONT 18 Continue executing, if stopped (POSIX)

SIGSTOP 19
Stop executing(can't be caught or ignored) 
(POSIX)

SIGPROF 27 Profiling alarm clock (4.2 BSD)

SIGWINCH 28 Window size change (4.3 BSD, Sun)



Signals (UNIX)

• OS keeps track of pending signals and signal actions for each process.

• Pending: signal has been “sent” to this process.  (bit 0->1)
• Signals are NOT queued.  Each signal number is either pending or not.

• Action: what to do in response.  Each signal has a default, but you can 
override (most of) them.  Choices: Default, Ignore, or Function

• Kernel checks for, delivers pending signals when resuming a process.



Signals (UNIX)
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OS OS

Heap
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Process 2’s Pending Signals:

Process 2’s Signal Actions: 



Signals (UNIX)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

signal(SIGUSR1, func);

…

(P2 gets context 

switched off CPU)

Process 2’s Pending Signals:

Process 2’s Signal Actions:  10 -> func



Signals (UNIX)

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

OS OS

Heap
Heap

OS

…

kill(process 2’s pid, SIGUSR1);

…

system call

Process 2’s Pending Signals: 10

Process 2’s Signal Actions:  10 -> func



Signals (UNIX)
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…

kill(process 2’s pid, SIGUSR1);

…

kill(process 2’s pid, SIGTERM);

…

system call

Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions:  10 -> func



Signals (UNIX)

Text

Data

Stack

Process 2

OS

Heap

OS
Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions:  10 -> func

When process 2 resumes executing, deliver the signals.

(Don’t count on any particular ordering.
For example: numerical order.)

For handling 10 (SIGUSR1), resume process by invoking the 
func() function.

For handling 15 (SIGTERM), use the default routine 
(terminate process).



Signals (UNIX)

Text

Data

Stack

Process 2

OS

Heap

OS
Process 2’s Pending Signals: 10, 15

Process 2’s Signal Actions:  10 -> func

• Data transfer: send one integer.

• Synchronization: OS marks signals as pending, delivers 
signals to process when scheduler chooses it

• Used for:
• terminating processes
• asking long-running processes to do maintenance
• debugging
• OS sending simple message to process (e.g., SIGCHLD, SIGPIPE)



Going Forward…

• Present an IPC abstraction and how it works

• Whether it’s built using shared memory or message passing
(or either)

• Where it’s used (e.g., single machine vs. over a network)

• When it’s used (e.g., example applications)



Communicating Across Machines

• Almost always some form of message passing.

• OS Kernel buffers message data.

• Typically used over a network, but also works on a single machine.
• client-server model VERY common, both local and across network

• Example: sound server on Linux desktop



Sockets

• Abstraction: socket() descriptor 
• write data to one side of socket
• read it at other

• Low-level data transfer interface
• send(fd, …) and recv(fd, …)

• Most commonly (TCP):
• one side listen()s for incoming connection
• other side connect()s to listener

Descriptor Table

0

1

2

7

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

The subsequent cross-machine 
mechanisms we’ll look at build 
upon sockets to provide higher-
level abstractions.



Sockets

• Abstraction: socket() descriptor 
• write data to one side of socket

• read it at other

• Low-level data transfer interface
• send(fd, …) and recv(fd, …)

• Data transfer: copy data to kernel, kernel will transmit (if necessary)

• Synchronization:?

Descriptor Table

0

1

2

7

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer



Sockets

• Abstraction: socket() descriptor 
• write data to one side of socket

• read it at other

• Low-level data transfer interface
• send(fd, …) and recv(fd, …)

• Data transfer: copy data to kernel, kernel will transmit (if necessary)

• Synchronization: kernel blocks process if operation can’t be performed

Descriptor Table

0

1

2

7

stdin stdout stderr

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer



Message Passing: Buffering

• Applies to pipes, sockets, anything built on top of them, and message 
passing in general.

• Problem: Storing data that has been sent but not yet asked for by the 
receiver.

• Buffer status dictates synchronization:
• buffer empty: read/recv will force process to wait (block)

• buffer full:     write/send will force process to wait (block)



Buffering

Network
“series of tubes”

https://en.wikipedia.org/wiki/Series_of_tubes

https://en.wikipedia.org/wiki/Series_of_tubes


Buffering

P1 P2

kernel kernel
Network



Buffering

P1 P2

kernel kernel

send(to, data) recv(from, data)

P1 wants to send data to P2.

Network



Buffering

P1 P2

kernel kernel

send(to, data) recv(from, data)

TCP/IP Socket Buffer TCP/IP Socket Buffer

All send() and recv() do is copy data to/from the OS.

OS will format data and send it using the network device when it can.

Network



Buffering

P1 P2

kernel kernel

send(to, data) recv(from, data)

TCP/IP Socket Buffer TCP/IP Socket Buffer

Kernel’s buffers have finite storage space!

If the buffer is empty, OS will mark the receiver 
process as blocked – can’t read data before it arrives!

If sender fills buffer, OS will mark the process as 
blocked – can’t be scheduled until space is free.

Network



Buffering

P1 P2

kernel kernel
Network

“series of tubes”

send(to, data) recv(from, data)

TCP/IP Socket Buffer TCP/IP Socket Buffer

Kernel’s buffers have finite storage space!

If the buffer is empty, OS will mark the receiver 
process as blocked – can’t read data before it arrives!

If sender fills buffer, OS will mark the process as 
blocked – can’t be scheduled until space is free.

This behavior is (commonly) the synchronization 
mechanism for message passing!

Note: Deadlock is still easily possible:

P1 – recv()
P2 – recv()



“Message Passing Interface” (MPI)

• Typically used in scientific computing tasks / super computers.

• Each machine given a numeric “rank” ID by MPI library.

• Can send/recv like sockets by specifying rank of recipient.

• Can also broadcast, reduce values, add barriers, and many others

Details of data transfer and synchronization vary according to MPI 
implementation, available hardware, and configuration.



Remote Procedure Call (RPC)

• Works like a function call, but via 
message passing (e.g., over the network).

• Data transfer: name of function and 
parameters sent via socket.

• Synchronization: caller waits for server to 
return back to it.

• Used frequently:
• NFS
• Web services

Image source:
https://technet.microsoft.com/en-us/library/cc738291(v=ws.10).aspx

https://technet.microsoft.com/en-us/library/cc738291(v=ws.10).aspx


Distributed Shared Memory (DSM)

• Multiple machines conspire to make it look like they have a giant pool 
of shared memory.

• OS intercepts memory accesses, sends to other nodes (if needed)

• Not much commercial success.



Summary

• Communication requires data transfer and synchronization.

• Common models for structuring the communication.
• (e.g., producer/consumer, client/server, and others)

• Many abstractions for performing communication
• Broad classifications: shared memory vs. message passing


