CS 43: Computer Networks
The Link Layer

Kevin Webb
Swarthmore College
April 19, 2022

TCP/IP Protocol Stack

host

\4

router

Application Layer

router

host

Ethernet
interface

Ethernet
interface

Internet Protocol Stack

* Application: Email, Web, ... /
* Transport: TCP, UDP, ... @
 Network: IP

e Link: Ethernet, WiFi, SONET, ...
* Physical: copper, fiber, air, ... -

I o

»”

“Hourglass” model, “thin waist”, “narrow waist”

Recall IP Motivation

e 1970’s: new network technologies emerge
 SATNet, Packet Radio, Ethernet
* All “islands” to themselves — didn’t work together

* |P question: how to connect these networks?

* This implies: These networks do all the stuff networks need to do,
without IP or routers.
* Solves some of the same problems as IP
e Often in a different way (smaller scale)

From Macro- to Micro-

* Previously, we looked at Internet scale...

Within a Subnet

Router

Link Layer Goal

* Get from one node to it’s nearby neighbor on the same IP network.

* Abstract the details of the underlying network technology from the
protocols above it (IP).

* Lots of media with different characteristics:
* Copper cable
* Fiber optic cable
* Radio/electromagnetic broadcast
» Satellite

Challenges

* Even with one medium:
* Potentially many ways to format & signal data.
* Multiple users may contend to transmit.
 How do we address endpoints?
 How do we locate destinations?

Link Layer Functions
1. Addressing: identifying endpoints

* Must be able to uniquely identify each host on the network.
Can’t assume IP.

* Implication: each host on the Internet will have two addresses:
IP & link-layer

Typically referred to as “MAC address”
Media Access Control

Addressing

e Typically, humans deal in IP addresses
(or DNS names that resolve to them)

* Network needs a mechanism to determine corresponding MAC
address for local sending

ARP: Address Resolution Protocol

e Common in networks you use: Ethernet, WiFi

* Broadcast to entire local network:

* “I'm looking for the MAC address of the host with IP address A.B.C.D. If
you’re out there, please respond to me!”

Vouwillimol hic inlab 7]

ARP Example
[

-~
IP: 130.58.68.10

MAC: ...

\
[Internet
Router
=)

IP: 130.58.68.1
MAC: 00:11:3D:09:F7:9A

IP: 130.58.68.11
MAC: ...

IP: 130.58.68.12 IP: 130.58.68.13
MAC: 00:65:88:42:E1:B2 MAC: ...

ARP Example

IP: 130.58.68.10

MAC: ...

Switch

Q /
Internet
Router
IP: 130.58.68.11 IP: 130.58.68.1

—— MAC: 00:11:3D:09:F7:9A
MAC: ..

Switch

IP: 130.58.68.12 IP: 130.58.68.13
MAC: 00:65:88:42:E1:B2 MAC: ...

ARP Example

IP: 130.58.68.10

MAC: ...

Q \ [Internet
Router

= IP: 130.58.68.1
IP: 130.58.68.11 : 130.50.68.

—— MAC: 00:11:3D:09:F7:9A
MAC: ..

Switch

IP: 130.58.68.12 IP: 130.58.68.13
MAC: 00:65:88:42:E1:B2 MAC: ...

ARP Example

IP: 130.58.68.10

MAC: ...

L i

IP: 130.58.68.11
MAC: ...

Cwritrh

“I'm 130.58.68.12 @ 00:65:88:42:E1:B2.

Who has 130.58.68.1?”

_
IP: 130.58.68.12
MAC: 00:65:88:42:E1:B2 MAC: ...

m /
Internet

Router

IP: 130.58.68.1
MAC: 00:11:3D:09:F7:9A

It creates an ARP message to
find the router’s MAC.

IP: 130.58.68.13

ARP Example

| ol |

“I'm 130.58.68.12 @ 00:65:88:42:E1:B2.
Who has 130.58.68.1?"

IP: 130.58.68.N

MAC: ...

\
Switch E -
; [Internet

“I’'m 130.58.68.12 @ 00:65:88:42:E1:B2.
Router

Who has 130.58.68.1?”

e

IP: 130.58.68.11 IP:130.58.68.1
MAC: 00:11:3D:09:F7:9A

MAC: ... /
Switch Broadcast the ARP to

“I'm 130.58.68.12 @ 00:65:88:42:E1:B2. |
Who has 130.58.68.17” —

Ll everyone on the local
= network.

IP: 130.58.68.12 IP: 130.58.68.13
MAC: 00:65:88:42:E1:B2 MAC: ...

ARP Example

IP: 130.58.68.10

MAC: ...

.

J

“I'm 130.58.68.1@ 00:11:3D:09:F7:9A”

IP: 130.58.68.11
MAC: ...

IP: 130.58.68.12
MAC: 00:65:88:42:E1:B2

Switch

IP: 130.58.68.13
MAC: ...

Router

IP: 130.58.68.1
MAC: 00:11:3D:09:F7:9A

Internet

Link Layer Functions

1. Addressing: identifying endpoints

2. Framing: Dividing data into pieces that are sized for the network to
handle.

* Data pieces:

* Transport: Segments
* Network: Datagrams (or packets)
* Link: Frames

* Physical: Bits

Link Layer Functions

1. Addressing: identifying endpoints

2. Framing: Dividing data into pieces that are sized for the network to
handle.

* Data pieces:

* Transport: Segments

* Network: Datagrams (or packets)
* Link: Frames

* Physical: Bits

“Big freaking deal, Sherlock!”

Why do we put a limit on the size of a frame?

A. To keep one user from hogging the channel.
B. To make signaling message boundaries easier.
C. To achieve higher performance

D. Some other reason.

Link Layer Functions
1. Addressing: identifying endpoints

2. Framing: Dividing data into pieces that are sized for the network to
handle.

3. Link access: Determining how to share the medium, who gets to
send, and for how long.

Link Access

* Some networks may not require much.

Router Point to point link, no sharing with other devices. Router

‘=)‘

Example 1: Single copper wire, only one of them can send at a time.

Example 2: Two copper wires in cable, each can send on one simultaneously.

Link Access

* For other networks, this is a huge challenge.

=

M

Link Access

* For other networks, this is a huge challenge.

Collision!

How should we handle collisions in general (for WiFi and
other link media)?

A. Enforce at the end hosts that only one sender transmit at a time.
B. Enforce in the network that only one sender transmit at a time.
C. Detect collisions and retransmit later.

D. Something else.

Link Layer Functions

1. Addressing: identifying endpoints

2. Framing: Dividing data into pieces that are sized for the network to
handle.

3. Link access: Determining how to share the medium, who gets to
send, and for how long.

4. Error detection/correction and reliability.

Reliability in the link l[ayer seems at odds with the E2E
principle. Why would we add reliability here?

A.

Legacy reasons: reliability was done at the link layer first, E2E came later.

It improves performance.

It’s necessary for correctness.

Some other reason.

It’s completely unnecessary.

Link Layer Functions

1. Addressing: identifying endpoints

2. Framing: Dividing data into pieces that are sized for the network to
handle. Not so complex...

3. Link access: Determining how to share the medium, who gets to
send, and for how long. Next time

4. Error detection/correction and reliability.

Recall: Internet Checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted packet
(note: used at transport layer only)

Sender: Receiver:

* treat segment contents as * compute checksum of received
sequence of 16-bit integers segment

* checksum: 1's complement * check if computed checksum
sum of segment contents equals checksum field value:

* sender puts checksum value * NO - error detected
into UDP checksum field * YES - no error detected.

But maybe errors
nonetheless?

Error Detection

EDC= Error Detection and Correction bits (redundancy)
D = Data protected by error checking, may include header fields

e Error detection not 100% reliable!
e protocol may miss some errors, but rarely
e larger EDC field yields better detection and correction

| datagram I | datagram I

otherwiseI

bits in D'

_>
OK detected
? error

<«—d diata bits—|
| D | EDC I D' EDC'

— () bit-error prone link {}—

Simple Parity - Sender

e Suppose you want to send the message:
* 001011011011000110010

* For every d bits (e.g., d = 7), add a parity bit:
e 1if the number of one’s is odd
* 0if the number of one’s is even

Message chunk Parity bit
0010110 1
1101100 0
0110010 1

* 001011011101100001100101

Simple Parity - Sender

e Suppose you want to send the message:
* 0010110 1101100 0110010

* For every d bits (e.g., d = 7), add a parity bit:
e 1if the number of one’s is odd
* 0if the number of one’s is even

Message chunk Parity bit
0010110 1
1101100 0
0110010 1

* 001011011101100001100101

Simple Parity - Receiver

* For each block of size d:
* Count the number of 1’s and compare with following parity bit.

* If an odd number of bits get flipped, we’ll detect it (can’t do much to
correct it).

* Cost: One extra bit for every d
* |In this example, 21 -> 24 bits.

Two-Dimensional Parity

e Suppose you want to send the same message:
* 001011011011000110010

* Add an extra parity byte, compute parity on “columns” too.
e Can detect 1, 2, 3-bit (and some 4-bit) errors

0010110 1
1101100 0
0110010 1
Parity byte: 1001000 0

Forward Error Correction

* With two-dimensional parity, we can even correct single-bit errors.

Parity
bits
0 0 1 0 1 1 0 1
1 0 1 0 0 0 1 0
1 0 0 1 0 1 1 0
1 1 1 0 1 1 0 1
Parity byte 1 1 1 1 1 1 0 0

Exactly one bit has been flipped. Which is it?

In practice...

* Bit errors might occur in bursts.

* We're willing to trade computational complexity for space efficiency.

* Make the detection routine more complex, to detect error bursts, without
tons of extra data

* Insight: We need hardware to interface with the network, do the
computation there!

Cyclic redundancy check

* more powerful error-detection coding

view data bits, D, as a binary number

choose r+1 bit pattern (generator), G

goal: choose r CRC bits, R, such that
* <D,R> exactly divisible by G (modulo 2)

* receiver knows G, divides <D,R> by G. If non-zero remainder:
error detected!

e can detect all burst errors less than r+1 bits

widely used in practice (Ethernet, 802.1 | WiFi,ATM)

+«——d bits >+ r bits —
bit
| D: data bits to be sent‘ R:CRC bitsl pattern

mathematical

N
D*2 XOR R formula

summary

* The link layer provides lots of functionality:
» addressing, framing, media access, error checking
e could be used independently of IP!
* typically only small scale

* Many different technologies out there.
* copper wires, optics, wireless, satellite
 differing challenges for each

