CS 43: Computer Networks
The Network Layer

Kevin Webb
Swarthmore College
March 24, 2022
TCP/IP Protocol Stack
Some background...

• 1968: DARPA/ARPAnet (precursor to Internet)
 • (Defense) Advanced Research Projects Agency Network
 • Bob Taylor, Larry Roberts create program to build first wide-area packet-switched network

• Mid 1970’s: new networks emerge
 • SATNet, Packet Radio, Ethernet
 • All “islands” to themselves – didn’t work together

• Big question: how to connect these networks?
Internetworking

• Cerf & Kahn, in 1974, “A Protocol for Packet Network Intercommunication”
 • Foundation for the modern Internet

• Routers forward packets from source to destination
 • May cross many separate networks along the way

• All packets use a common Internet Protocol
 • Any underlying data link protocol
 • Any higher layer transport protocol
DARPAnet Primary Goal: Connect Stuff

• “Effective technique for multiplexed utilization of existing interconnected networks” – David Clark (1988)

 • **Minimal** assumptions about underlying networks
 • No support for broadcast, multicast, real-time, reliability
 • Extra support could actually get in the way
 • Packet switched, store and forward
 • Matched application needs, nets already packet switched
 • Enables **efficient resource sharing**/high utilization
 • “Gateways” interconnect networks
 • Routers in today’s nomenclature
Internet Protocol Stack

- Application: Email, Web, ...
- Transport: TCP, UDP, ...
- Network: IP
- Link: Ethernet, WiFi, ATM, ...
- Physical: copper, fiber, air, ...

- “Hourglass” model, “thin waist”, “narrow waist”
Internet Protocol Stack

• This should seem weird.

• *Everyone* uses IP?

• “Hourglass” model, “thin waist”, “narrow waist”
Network Layer Functions

- **Forwarding:** move packets from router’s input to appropriate router output ("data plane")

- **Routing:** determine route taken by packets from source to destination. ("control plane")
When should a router perform routing?
Forwarding?

A. Do both when a packet arrives.

B. Route in advance, forward when a packet arrives.

C. Forward in advance, route when a packet arrives.

D. Do both in advance.

E. Some other combination
Example of Internet Routing

Network layer involved at every hop along the path.
Network Layer Functions

• **Forwarding**: move packets from router’s input to appropriate router output
 • Look up in a table

• **Routing**: determine route taken by packets from source to destination.
 • Populating the table
Interplay between routing and forwarding

Each packet is forwarded independently. Does it have to be that way?
Circuit Switching

• Reserve path in advance

• (Old) telephone system
Why doesn’t the Internet (typically) use circuits?

A. It’s too slow to establish a connection.

B. It doesn’t offer good enough performance.

C. It wastes resources.

D. It requires too many resources.

E. Some other reason.
Packet Switching

• Do we always need to reserve a link?

• **Statistical multiplexing**
 • Assign multiple conversations to a physical path
 • At any given time, one will have something to say
Which of the following is/are generally true of packet vs. circuit switching?

1. Packet switching has less variance in performance.
2. Circuit switching is less reliable.

A. Only 1 is true.
B. Only 2 is true.
C. Both 1 and 2 are true.
D. Neither 1 nor 2 are true.
Circuit-switching vs. Packet switching

• Circuit switching: establish path, send data
 • Reserve resources, provide performance control
 • Example: telephone system

• Packet switching: forward packets hop by hop
 • Fair sharing despite bursts, statistical multiplexing
 • Example: postal system
Datagram vs. “Virtual Circuit”

• *Datagram* network provides network-layer *connectionless* service (packet switching)

• *Virtual-circuit* network provides network-layer *connection* service (like circuit switching)
Virtual circuits: Signaling Protocols

- Used to setup, maintain, teardown VC
- Used in ATM, frame-relay, X.25
- Less common in today’s Internet
Datagram Networks

• No call setup at network layer
• Routers: no state about end-to-end connections
 ▪ no network-level concept of “connection”
• Packets forwarded individually towards destination

1. send datagrams
2. receive datagrams
How should we populate a router’s forwarding table?

A. A person should add entries to the table.

B. A program external to the router should add entries to the table.

C. Routers should communicate with each other to add entries to their tables.

D. Some other mechanism.
Routing

Traditional
- Routers run a **routing protocol** to exchange state.

- Use state to build up the forwarding table.

Assume this is the type of routing we’re talking about unless we explicitly say otherwise!
Routing

Traditional
- Routers run a **routing protocol** to exchange state.
- Use state to build up the forwarding table.

“Software-Defined”
- Routers are dumb, just do what they’re told.
- Controller service explicitly tells each router what to do.
- Rare on the Internet, hot topic in data centers.
Datagram Forwarding

• Routers periodically exchange state.

• Use the state to build a forwarding table (FIB)
Datagram forwarding table

Routing algorithm

Local forwarding table

<table>
<thead>
<tr>
<th>dest address</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

IP destination address in arriving packet’s header
Routers exchange state (we’ll save the what and when for later). They decide, for each destination, how to get there, and build a lookup structure for their forwarding table. What should they build?

A. A list – scan for the destination.
B. A hash table – look up the destination.
C. A tree – Follow branches that lead to the destination.
D. Some other software structure.
E. We can’t do this in software, we need special hardware.
Datagram forwarding table

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

<table>
<thead>
<tr>
<th>source address</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-range 1</td>
<td>3</td>
</tr>
<tr>
<td>address-range 2</td>
<td>2</td>
</tr>
<tr>
<td>address-range 3</td>
<td>2</td>
</tr>
<tr>
<td>address-range 4</td>
<td>1</td>
</tr>
</tbody>
</table>

IP destination address in arriving packet’s header
Datagram forwarding table

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111</td>
<td>2</td>
</tr>
<tr>
<td>Otherwise (default gateway)</td>
<td>3</td>
</tr>
</tbody>
</table>

Q: but what happens if ranges don’t divide up so nicely?
Longest prefix matching

longest prefix matching

When looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010*** *********</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 *********</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011*** *********</td>
<td>2</td>
</tr>
<tr>
<td>Otherwise (default gateway)</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples:
- DA: 11001000 00010111 00010110 10100001 which interface?
- DA: 11001000 00010111 00011000 10101010 which interface?
Routing

Traditional
• Routers run a **routing protocol** to exchange state.

• Use state to build up the forwarding table.

“Software-Defined”
• Routers are dumb, just do what they’re told.

• Controller service explicitly tells each router what to do.

• Rare on the Internet, hot topic in data centers.

Coming up in ~1 week.
Software-Defined Networking (SDN)

Traditional Hardware

SDN Hardware
Software-Defined Networking (SDN)

Traditional Hardware

SDN Hardware
Summary

• Forwarding: moving packet from one interface to another (table lookup)
• Routing: Populating the table in advance

• On the Internet, best effort packet switching is the norm

• Hardware helps with quick forwarding using longest prefix matching