
CS 43: Computer Networks
Flow and Congestion Control

Kevin Webb

Swarthmore College

March 22, 2022

Recap

• Wrapping up the transport layer

• Rounding out TCP
• Sliding window: how many bytes to pipeline

• How big do we make that window?
• Too small: waste capacity

• Too large: congestion

• Other concerns: fairness

Application

Transport

Network

(Data) Link

Physical

Rate Control

Flow Control

• Don’t send so fast that we
overload the receiver.

• Rate directly negotiated
between one pair of hosts (the
sender and receiver).

Congestion Control

• Don’t send so fast that we
overload the network.

• Rate inferred by sender in
response to “congestion events.”

Shared high-level goal: don’t waste capacity by
sending something that is likely to be dropped.

Flow Control

• Example scenario:

Fast server Low-power device

Problem: Sender can send at a high rate. Network can
deliver at a high rate. The receiver is drowning in data.

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

App calls recv()

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

App calls recv()

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Flow Control

Fast server Low-power device

Finite socket buffer
space at the receiver.

Stop!

TCP Segments

source port # dest port #

32 bits

application

data

(variable length)

Urg data pointer

FSRPAU
head

len

not

used

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

checksum

Internet

checksum

(as in UDP)

receive window
bytes

rcvr willing

to accept

sequence number

acknowledgement number

counting

by bytes

of data

(not segments!)

options (variable length)

AKA: rwnd

Flow Control

• Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Flow Control

• Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Flow Control

• Sender never sends more than rwnd.

Fast server Low-power device

Finite socket buffer
space at the receiver.

Ack. rwnd: 4

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

min(rwnd, cwnd)

Congestion

• Flow control is (relatively) easy. The receiver knows how much space
it has.

• What about the network devices?

Congestion

Router

Router’s buffer.

Congestion

Router

Router’s buffer.

Incoming rate is faster than
outgoing link can support.

Trash

Congestion

Router

Router’s buffer.

Incoming rate is faster than
outgoing link can support.

Ugh. I so
can’t deal

with this right
now!

What’s the worst that can happen?

A. This is no problem. Senders just keep transmitting,
and it’ll all work out.

B. There will be retransmissions, but the network will
still perform without much trouble.

C. Retransmissions will become very frequent, causing a
serious loss of efficiency.

D. The network will become completely unusable.

Congestion Collapse

…

…

…

…

Link A Link B

Congestion Collapse

…

…

…

…

Link A Link B

One sender starts,
but there’s still
capacity at link A.

S1

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2

Another sender starts
up. Link A is showing
slight delay, but still
doing ok.

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2

Unrelated traffic
passes through and
congests link B.

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2
S2’s traffic is being dropped at
Link B, so it starts retransmitting
on top of what it was sending.

(This is very bad. S2 is now sending lots of traffic over link A
that has no hope of crossing link B.)

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2

Increased traffic from S2
causes Link A to become
congested. S1 starts
retransmitting.

Congestion Collapse

…

…

…

…

Link A Link B

S1

S2

Congestion
propagates
backwards…

Without Congestion Control

• Congestion…
• Increases delivery latency

• Increases loss rate

• Increases retransmissions, many unnecessary

• Wastes capacity on traffic that is never delivered

• Increases congestion, cycle continues…

Congestion Collapse

• This happened to the Internet (then NSFnet) in 1986.
• Rate dropped from a blazing 32 kbps to 40 bps

• This happened on and off for two years

• In 1988, Van Jacobson published
“Congestion Avoidance and Control”

• The fix: senders voluntarily limit sending rate

Intuition so far…

• Senders voluntarily limit how quickly they send to prevent over filling
the network.

• General goal: sender should send at a rate that roughly corresponds
to an equal "fair share" of its most bottlenecked link

"Equal fair share"

… …

…

Link A
(50 Mbps)

Link B
(10 Mbps)

S1

S2 S3

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2

Challenges

• How can a sender determine its "fair share" of a link?

• What if "fair shares" are changing as new conversations start or stop?

• Initially: a sender knows nothing about the state of the network
• Send too little, capacity goes unused

• Send too much, cause congestion for everyone else

• sender limits transmission:

• cwnd is dynamic, based on
perceived network congestion

TCP sending rate:

• send cwnd bytes, wait
RTT for ACKS, then
send more byteslast byte

ACKed sent, not-
yet ACKed
(“in-flight”)

last byte
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

TCP Congestion Control: mechanism details

How should we set cwnd?
A. We should keep raising it until a “congestion event”, then

back off slightly until we notice no more events.

B. We should raise it quickly until a “congestion event”,
then go back to 0 and start raising it again.

C. We should raise it until a “congestion event”, then go
back to a median value and start raising it again.

D. We should send as fast as possible at all times.

E. Some other strategy (what?)

What is a “congestion event”?

A. A segment loss

B. Receiving duplicate acknowledgement(s)

C. A retransmission timeout firing

D. Some subset of the above

E. All of the above

TCP Congestion Control Phases

• "Slow Start" Phase
• Start conservatively, increase rate quickly

• Intuition: sender unsure of network’s congestion, probe for capacity

• "Congestion Avoidance" Phase
• Increase rate slowly

• Back off when congestion occurs
• How much depends on TCP version

• Intuition: once we're close to "fair share", try to hover around that point, but
still adapt to changes (e.g., new TCP competitors starting / stopping)

TCP Slow Start

• When connection begins,
increase rate exponentially until
first loss event:
 initially cwnd = 1 segment (1 MSS)

 double cwnd every RTT

 done by incrementing cwnd for
every ACK received

• Summary: initial rate is slow but
ramps up exponentially

• When do we stop?

Host A

R
T

T

Host B

time

Commonly 1448 bytes
across the Internet today.

TCP Slow Start

• When do we stop?

• Initially
• On a congestion event

• Later
• On a congestion event

• When we cross a
previously-determined
threshold

Host A

R
T

T

Host B

time

Initial slow start
Half (8) of the

current window
size (16) seemed to

work ok…

TCP Congestion Avoidance

• ssthresh: Threshold where slow start ends

• During initial slow start, threshold is unlimited
• On congestion event, set it to half of current window size

• In congestion avoidance, instead of doubling, increase
cwnd by one MSS every RTT.
• Increase cwnd by MSS/cwnd bytes for each ACK

• Back off on congestion event

We can determine that a packet was
lost two different ways: via 3 duplicate
ACKS, or via a timeout. We should…

A. Treat these events differently.

B. Treat these events the same.

(For discussion: Is one of these events worse than the
other, or do they represent equally bad scenarios? If
they’re not equal, which is worse?)

Detecting, Reacting to Loss (TCP "Tahoe")

• Loss indicated by timeout:

– cwnd set to 1 segment (1 MSS);

– window then grows exponentially (as in slow start)
to threshold, then grows linearly

• Loss indicated by 3 duplicate ACKs:

– cwnd set to 1 segment (1 MSS);

– window then grows exponentially (as in slow start)
to threshold, then grows linearly

(Tahoe handles both of these the same way).

TCP Tahoe

Detecting, Reacting to Loss (TCP "Reno")

• Loss indicated by timeout:

– cwnd set to 1 segment (1 MSS);

– window then grows exponentially (as in slow start)
to threshold, then grows linearly

• Loss indicated by 3 duplicate ACKs:

– cwnd is cut in half window then grows linearly

– dup ACKs indicate network capable of delivering
some segments

TCP Reno
Note: This picture assumes losses are detected via duplicate

ACKs. Timeouts still go to 1 and slow start up to ssthresh.

• approach: sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs

• additive increase: increase cwnd by 1 MSS (Maximum
Segment Size) every RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

T
C

P
 R

e
n

o
 s

e
n

d
e

r

c
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e
AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Congestion Avoidance: AIMD

TCP Variants

• There are tons of them!
See: https://en.wikipedia.org/wiki/TCP_congestion_control

• Tahoe, Reno, New Reno, Vegas, Hybla, BIC, CUBIC, Westwood,
Compound TCP, DCTCP, YeAH-TCP, BBR, …

• Each tweaks and adjusts the response to congestion.

• Why not just find a cwnd value that works, and stick with it?

https://en.wikipedia.org/wiki/TCP_congestion_control

Challenges (Revisited)

• How can a sender determine its "fair share" of a link?

• What if "fair shares" are changing as new conversations start or stop?

• Initially: a sender knows nothing about the state of the network
• Send too little, capacity goes unused

• Send too much, cause congestion for everyone else

TCP Fairness

Time ->

Flow
Rates

Two competing sessions:
• additive increase gives slope of 1, as throughput increases
• multiplicative decrease decreases throughput proportionally

Since TCP is fair, does this mean we no
longer have to worry about bandwidth
hogging?

A. Yep, solved it!

B. No, we can still game the system.

If you wanted to cheat to get
extra traffic through, how
might you do it?

Fairness (more)

Fairness and UDP

• Multimedia apps often
do not use TCP
• do not want rate

throttled by congestion
control

• Instead use UDP:
• send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

• Application can open multiple
parallel connections between
two hosts

• Web browsers do this

• e.g., link of rate R with 9
existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets R/2

Summary

• TCP has mechanisms to control sending rate:
• Flow control: don’t overload receiver
• Congestion control: don’t overload network

• min(rwnd, cwnd) determines window size for TCP segment
pipelining (typically cwnd)

• Two congestion control phases (TCP Reno):
• slow start: multiplicative increase, up to a threshold (if not first time)
• congestion avoidance: additive increase, multiplicative decrease (AIMD)

