CS 43: Computer Networks
TCP

Kevin Webb
Swarthmore College
March 1, 2022

Practical Reliability Questions

* How do the sender and receiver keep track of
outstanding pipelined segments?

* How many segments should be pipelined?

* How do we choose sequence numbers?

* What does connection establishment look like?
* How should we choose timeout values?

TCP Overview

e Point-to-point, full duplex
* One pair of hosts
* Messages in both directions

* Reliable, in-order byte
stream

* No discrete messages

e Connection-oriented

* Handshaking (exchange of
control messages) before
data transmitted

* Pipelined

* Many segments in flight

* Flow control

* Don’t send too fast for the receiver

* Congestion control

e Don’t send too fast for the network

TCP Segments

<
<

32 hits

URG: urgent data
(generally not used)\

source port # dest port #

ACK: ACK #

. Sequence number

valid

\kngwledgement number

head|n \Tkru
7
(generally not used) —| Urg data pointer

RST, SYN, fN—T
connection estab

op/a{ s (variable length)

(setup, teardown
commands) L
application

Internet /

checksum
(as in UDP)

data
(variable length)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

TCP Segments

20 Bytes

(UDP was 8)

<
<

source port #

32 hits

dest port #

sequence number

acknowledgement number

head
len

not

used

U

A|P |R

S

F

receive window

checksum

Urg data pointer

options (variable length)

application
data
(variable length)

Practical Reliability Questions

e What does connection establishment look like?

A connection...

1. Requires stored state at two hosts.
Requires stored state within the network.
Establishes a path between two hosts.

W N

1&3
1,2 &3

m o O o >

2&3

Connections

* In TCP, hosts must establish a connection prior to communicating.

e Opportunity to exchange initial protocol state.
* Which sequence numbers to use.
* What the maximum segment size should be.
* Initial window sizes, etc. (several parameters)

Connection Establishment
(three-way handshake)

Active participant Passive participant
(client) (server)
SYN_SENT LISTEN

ESTABLISHED

SYN_RCVD

ESTABLISHED

TCP Segments

« 32 hits

source port # dest port #

sequence number

ACK: ACK #
valid \\agknowledgement number
head|not—) :
len |used UA|PES F| receive window
m

Urg data pointer

 cheeksun
/

RST, SYN,FIN:=" | options (variable length)
connection estab

(setup, teardown
commands)

application
data
(variable length)

Connection Establishment
(three-way handshake)

(Server) bind(), listen()
LISTEN

connect() (Client) accept()

SYN_SENT

SYN_RCVD

ESTABLISHED

connect() returns
eventually, send()

y + 7 =~ ESTABLISHED

accept() returns

Both sides agree on connection.
< >

Piggybacking

e So far, we’ve assumed distinct
“sender” and “receiver” roles

* In reality, usually both sides of a
connection send some data

* request/response is a common
pattern

Client

eQUest

f

ACK

esponS

A\

ACk

eQUest

f

ACK

p\espon

|

Server Client

Without
Piggybacking

ReQUest

» ACK

Reqy

(S

m\
X

)yse‘kp\c

With
Piggybacking

Server

Connection Teardown

* Orderly release by sender and receiver when done
* Delivers all pending data and “hangs up”

* Cleans up state in sender and receiver

* Each side may terminate independently

TCP Connection Teardown

close()

Initiator

ESTABLISHED :
connection

active close

FIN_WAIT_1

FIN WAIT_2

TIME_WAIT :

CLOSED

ACK
:w

Recelver

. ESTABLISHED
: connection

FIN\)

CLOSE_ WAIT
passive close

LAST_ACK close()

CLOSED

Why does one side need to wait before
transitioning to CLOSED state”

Initiator Recelver
ESTABLISHED : =
connection :
active close ° ESTABLISHED
FIN WAIT 1 : connection

FIN WAIT_2

TIME_WAIT :

CLOSED

FIN ;
\ E CLOSE_WAIT

passive close

ACK

ACK
\i CLOSED

The TIME_WAIT State

* We wait 2*MSL (maximum segment lifetime) before completing the close. The
MSL is arbitrary (usually 60 sec)

* ACK might have been lost and so FIN will be resent
* Could interfere with a subsequent connection

* This is why we used SO_REUSEADDR socket option in lab 2

 Says to skip this waiting step and immediately abort the connection

Practical Reliability Questions

* How do we choose sequence numbers?

How should we choose the initial sequence
number?

What can go wrong with
A. Start from zero sequence humbers?
-How they’re chosen?

-In the course of using them?
B. Start from one

C. Start from a random number

D. Start from some other value (such as...?)

Sequencing

* Initial sequence numbers (ISN) chosen at random
* Does not start at 0 or 1 (anymore).
* Helps to prevent against forgery attacks.

* TCP sequences bytes rather than segments

 Example: if we're sending 1500-byte segments
 Randomly choose ISN (suppose we picked 1150)
* First segment (sized 1500) would use number 1150
* Next would use 2650

Sequence Prediction Attack (1996)

Target Server

(From: For

TN ged IP of Trysted Client)
(From: Forged IP of Trusted Client)
ACK (Guess the ISN of server)

Evil commands

Attacker

g

W
|

SYN ACK

Trusted Client

Practical Reliability Questions

* How do the sender and receiver keep track of
outstanding pipelined segments?

Windowing (Sliding Window)

e At the sender:
 What’s been ACKed
* What's still outstanding
* What to send next

* At the receiver:
* Go-back-N
* Highest sequence number received so far.

* (Selective repeat)
* Which sequence numbers received so far.
* Buffered data.

Go-back-N

e At the sender:

send_base hexfsegnum dready Lsable. rot
i i ack’ed yet sent
JIRECELEEETIEL000000 | s [rovoscee
+ _ window sze —%
N

* At the receiver:

» Keep track of largest sequence number seen.

* If it receives ANYTHING, sends back ACK for largest sequence number seen so
far. (Cumulative ACK)

Cumulative Acknowledgements

* An ACK for sequence number N implies that all data prior to N has
been received.

Cumulative Acknowledgements

* An ACK for sequence number N implies that all data prior to N has
been received.

er nder

Data Data o

Data 1555 M\
o3

)/O(ABOO

What should we do with an out-of-order
segment at the receiver?

A. Drop it.
B. Save it and ACK it.
C. Save it, don’t ACK it.

D. Something else (explain).

Selective Repeat

send_base nexfsegnum dlready Usable. not
Jv ¢ ack’ed yet sent
(LT =y e
L _ window size —2
N

(a) sender view of sequence numlbers

out of order

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIIIIII |opectes ner [rereseer

t _ window size_4

1 N

rcv_base

(b) receiver view of sequence numbers

If you were building a transport protocol,
which would you use?

A. Go-back-N
B. Selective repeat

C. Something else (explain)

Practical Reliability Questions

* How should we choose timeout values?

Timeouts

* How long should we wait before timing out and retransmitting a
segment?

* Too short: needless retransmissions
* Too long: slow reaction to losses

e Should be (a little bit) longer than the RTT

Estimating RTT

* Problem: RTT changes over time
* Routers buffer packets in queues
* Queue lengths vary
* Receiver may have varying load

e Sender takes measurements
e Use statistics to decide future timeouts for sends
e Estimate RTT and variance

* Apply “smoothing” to account for changes

Estimating RTT

* For each segment that did not require a retransmit (ACK heard
without a timeout)

* Consider the time between segment sent and ACK received to be a
sample of the current RTT

* Use that, along with previous history, to update the current RTT
estimate

e Exponentially Weighted Moving Average (EWMA)

EWMA

EstimatedRTT = (1 — a) * EstimatedRTT + a * SampleRTT

a is usually 1/8.

In other words, our current estimate is a blend of 7/8 of the previous
estimate plus 1/8 of the new sample.

DevRTT = (1 —B) * DevRTT + B * | SampleRTT — EstimatedRTT |
B is usually 1/4

Example

* Suppose EstimateRTT =64, Dev=38
Latest sample: 120

New estimate=7/8 *64 +1/8 * 120=56 + 15=71
Newdev=3/4*8+1/4*|120-71|=6+12=18

* Another sample: 400
New estimate=7/8 * 71+ 1/8 *400=62+50=112
New dev=3/4*18+1/4* | 400-112 | =13+ 72 =85

Book Example (Smoothing

350 -

300

1 T] 1

RTT (milliseconds)

200 +

150

100 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—e— SampleRTT —®— Estimated RTT

TCP Timeout Value

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Practical Reliability Questions

* How do the sender and receiver keep track of
outstanding pipelined segments?

* How many segments should be pipelined?

* How do we choose sequence numbers?

* What does connection establishment look like?
* How should we choose timeout values?

Next time...

* How do the sender and receiver keep track of
outstanding pipelined segments?

* How many segments should be pipelined?

* How do we choose sequence numbers?

* What does connection establishment look like?
* How should we choose timeout values?

