
CS 43: Computer Networks
TCP

Kevin Webb

Swarthmore College

March 1, 2022

Practical Reliability Questions

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How many segments should be pipelined?

• How do we choose sequence numbers?

• What does connection establishment look like?

• How should we choose timeout values?

TCP Overview
• Point-to-point, full duplex

• One pair of hosts
• Messages in both directions

• Reliable, in-order byte
stream
• No discrete messages

• Connection-oriented
• Handshaking (exchange of

control messages) before
data transmitted

• Pipelined
• Many segments in flight

• Flow control
• Don’t send too fast for the receiver

• Congestion control
• Don’t send too fast for the network

TCP Segments

source port # dest port #

32 bits

application

data

(variable length)

Urg data pointer

FSRPAU
head

len

not

used

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

checksum

Internet

checksum

(as in UDP)

receive window
bytes

rcvr willing

to accept

sequence number

acknowledgement number

counting

by bytes

of data

(not segments!)

options (variable length)

TCP Segments

source port # dest port #

32 bits

application

data

(variable length)

Urg data pointer

FSRPAU
head

len

not

used

checksum

receive window

sequence number

acknowledgement number

options (variable length)

20 Bytes

(UDP was 8)

Practical Reliability Questions

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How many segments should be pipelined?

• How do we choose sequence numbers?

• What does connection establishment look like?

• How should we choose timeout values?

A connection…

1. Requires stored state at two hosts.

2. Requires stored state within the network.

3. Establishes a path between two hosts.

A. 1

B. 1 & 3

C. 1, 2 & 3

D. 2

E. 2 & 3

Connections

• In TCP, hosts must establish a connection prior to communicating.

• Opportunity to exchange initial protocol state.
• Which sequence numbers to use.

• What the maximum segment size should be.

• Initial window sizes, etc. (several parameters)

Connection Establishment
(three-way handshake)

Active participant
(client)

Passive participant
(server)

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

TCP Segments

source port # dest port #

32 bits

application

data

(variable length)

Urg data pointer

FSRPAU
head

len

not

used

ACK: ACK #

valid

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

checksum

receive window

sequence number

acknowledgement number

options (variable length)

Connection Establishment
(three-way handshake)

(Client)

(Server)

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

connect()

bind(), listen()

accept()

connect() returns
eventually, send()

Both sides agree on connection.

accept() returns

Piggybacking

• So far, we’ve assumed distinct
“sender” and “receiver” roles

• In reality, usually both sides of a
connection send some data
• request/response is a common

pattern

Client Server

Without
Piggybacking

…

Client Server

With
Piggybacking

…

Connection Teardown

• Orderly release by sender and receiver when done
• Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• Each side may terminate independently

TCP Connection Teardown

close()

close()

Why does one side need to wait before
transitioning to CLOSED state?

The TIME_WAIT State

• We wait 2*MSL (maximum segment lifetime) before completing the close. The
MSL is arbitrary (usually 60 sec)

• ACK might have been lost and so FIN will be resent
• Could interfere with a subsequent connection

• This is why we used SO_REUSEADDR socket option in lab 2
• Says to skip this waiting step and immediately abort the connection

Practical Reliability Questions

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How many segments should be pipelined?

• How do we choose sequence numbers?

• What does connection establishment look like?

• How should we choose timeout values?

How should we choose the initial sequence
number?
A. Start from zero

B. Start from one

C. Start from a random number

D. Start from some other value (such as…?)

What can go wrong with
sequence numbers?
-How they’re chosen?
-In the course of using them?

Sequencing

• Initial sequence numbers (ISN) chosen at random
• Does not start at 0 or 1 (anymore).

• Helps to prevent against forgery attacks.

• TCP sequences bytes rather than segments
• Example: if we’re sending 1500-byte segments

• Randomly choose ISN (suppose we picked 1150)

• First segment (sized 1500) would use number 1150

• Next would use 2650

Sequence Prediction Attack (1996)
Target Server

Trusted Client

Attacker

SYN ACK

(From: Forged IP of Trusted Client)
ACK (Guess the ISN of server)

Evil commands

Practical Reliability Questions

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How many segments should be pipelined?

• How do we choose sequence numbers?

• What does connection establishment look like?

• How should we choose timeout values?

Windowing (Sliding Window)

• At the sender:
• What’s been ACKed

• What’s still outstanding

• What to send next

• At the receiver:
• Go-back-N

• Highest sequence number received so far.

• (Selective repeat)
• Which sequence numbers received so far.

• Buffered data.

Go-back-N

• At the sender:

• At the receiver:
• Keep track of largest sequence number seen.

• If it receives ANYTHING, sends back ACK for largest sequence number seen so
far. (Cumulative ACK)

Cumulative Acknowledgements

• An ACK for sequence number N implies that all data prior to N has
been received.

Sender Receiver

Cumulative Acknowledgements

• An ACK for sequence number N implies that all data prior to N has
been received.

Sender Receiver Sender Receiver

?

What should we do with an out-of-order
segment at the receiver?
A. Drop it.

B. Save it and ACK it.

C. Save it, don’t ACK it.

D. Something else (explain).

Selective Repeat

If you were building a transport protocol,
which would you use?

A. Go-back-N

B. Selective repeat

C. Something else (explain)

Practical Reliability Questions

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How many segments should be pipelined?

• How do we choose sequence numbers?

• What does connection establishment look like?

• How should we choose timeout values?

Timeouts

• How long should we wait before timing out and retransmitting a
segment?

• Too short: needless retransmissions

• Too long: slow reaction to losses

• Should be (a little bit) longer than the RTT

Estimating RTT

• Problem: RTT changes over time
• Routers buffer packets in queues
• Queue lengths vary
• Receiver may have varying load

• Sender takes measurements
• Use statistics to decide future timeouts for sends
• Estimate RTT and variance

• Apply “smoothing” to account for changes

Estimating RTT

• For each segment that did not require a retransmit (ACK heard
without a timeout)
• Consider the time between segment sent and ACK received to be a

sample of the current RTT

• Use that, along with previous history, to update the current RTT
estimate

• Exponentially Weighted Moving Average (EWMA)

EWMA

EstimatedRTT = (1 – a) * EstimatedRTT + a * SampleRTT

a is usually 1/8.

In other words, our current estimate is a blend of 7/8 of the previous
estimate plus 1/8 of the new sample.

DevRTT = (1 – B) * DevRTT + B * | SampleRTT – EstimatedRTT |

B is usually 1/4

Example

• Suppose EstimateRTT = 64, Dev = 8

Latest sample: 120

New estimate = 7/8 * 64 + 1/8 * 120 = 56 + 15= 71

New dev = 3/4 * 8 + 1/4 * | 120 - 71 | = 6 + 12 = 18

• Another sample: 400

New estimate = 7/8 * 71 + 1/8 * 400 = 62 + 50 = 112

New dev = 3/4 * 18 + 1/4 * | 400 - 112 | = 13 + 72 = 85

Book Example (Smoothing)
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

TCP Timeout Value

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Practical Reliability Questions

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How many segments should be pipelined?

• How do we choose sequence numbers?

• What does connection establishment look like?

• How should we choose timeout values?

Next time…

• How do the sender and receiver keep track of
outstanding pipelined segments?

• How many segments should be pipelined?

• How do we choose sequence numbers?

• What does connection establishment look like?

• How should we choose timeout values?

