
CS 43: Computer Networks
Reliable Data Transfer

Kevin Webb

Swarthmore College

February 24, 2022

Agenda

• Today: General principles of reliability

• Next time: details of one concrete, very popular protocol: TCP

The Two Generals Problem

• Two army divisions (blue) surround enemy (red)
• Each division led by a general

• Both must agree when to simultaneously attack

• If either side attacks alone, defeat

• Generals can only communicate via messengers
• Messengers may get captured (unreliable channel)

The Two Generals Problem

• How to coordinate?
• Send messenger: “Attack at dawn”

• What if messenger doesn’t make it?

The Two Generals Problem

• How to be sure messenger made it?
• Send acknowledgment: “I delivered message”

In the “two generals problem”, can the two
armies reliably coordinate their attack?

• A. Yes (explain how)

• B. No (explain why not)

The Two Generals Problem

• Result
• Can’t create perfect channel out of faulty one

• Can only increase probability of success

Give up? No way!

• As humans, we like to face difficult problems.
• We can’t control oceans, but we can build canals

• We can’t fly, but we’ve landed on the moon

• We just need engineering!

(Unsinkable)

Engineering

• Concerns
• Message corruption

• Message duplication

• Message loss

• Message reordering

• Performance

• Our toolbox
• Checksums

• Timeouts

• Acks & Nacks

• Sequence numbering

• Pipelining

Engineering

• Concerns
• Message corruption

• Message duplication

• Message loss

• Message reordering

• Performance

• Our toolbox
• Checksums

• Timeouts

• Acks & Nacks

• Sequence numbering

• Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

(We’ll briefly talk about alternatives at the end.)

Automatic Repeat Request (ARQ)

• Intuitively, ARQ protocols act like you would when using a cell phone
with bad reception.
• Message garbled? Ask to repeat.

• Didn’t hear a response? Speak again.

• Refer to book for building state machines.
• We’ll look at TCP’s states soon

ARQ Broad Classifications

1. Stop-and-wait

Stop and Wait

Sender Receiver

T
im

e
…

Up next: concrete problems and mechanisms to solve them.
These mechanisms will build upon each other, so please stop me
if you have Questions!

Corruption?

• Error detection mechanism: checksum
• Data good – receiver sends back ACK

• Data corrupt – receiver sends back NACK

Sender Receiver

T
im

e

Could we do this with just ACKs or just
NACKs?

• Error detection mechanism: checksum
• Data good – receiver sends back ACK

• Data corrupt – receiver sends back NACK

Sender Receiver

T
im

e

A. No, we need them both.

B. Yes, we could do without one
of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Could we do this with just ACKs or just
NACKs?

Sender Receiver

T
im

e

A. No, we need them both.

B. Yes, we could do without one
of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

With only ACK, we could get by with a timeout.

With only NACK, we couldn’t advance (no good).

Timeouts

• Sender starts a clock. If no response, retry.

• Probably not a great idea for handling corruption, but
it works.

Sender Receiver

T
im

e

Ti
m

eo
u

t

T i
m

e
o

u
t

Sender Receiver

Ti
m

eo
u

t

Corruption? Send no response.

Timeouts and Losses

• Timeouts help us handle message losses too!

Sender Receiver

T
im

e

T
im

eo
u

t

T i
m

e
o

u
t

T

Sender Receiver

im
eo

u
t

Adding timeouts might create new problems for us to worry
about. How many? Examples?

A. No new problems (why not?)

B. One new problem (what is it?)

C. Two new problems (what are they?)

D. More than two new problems (what are they?)

Sender Receiver

T
im

e

Ti
m

eo
u

t

T i
m

eo
u

t
T

Sender Receiver

im
eo

u
t

Sequence Numbering

Sender

• Add a monotonically increasing
label to each msg

Receiver

• Ignore messages with numbers
we’ve seen before

• When pipelining (a few slides
from now)
• Detect gaps in the sequence (e.g.,

1,2,4,5)

123

Sender Receiver

Suppose we had a modest 8 Mbps (one
megabyte per second) link. Our RTT is 100 ms,
and we send 1024-byte (1K) segments. What is
our link utilization with a stop and wait protocol?

A. < 0.1 %

B. ≈ 0.1 %

C. ≈ 1 %

D. 1-10 %

E. > 10 %

Big Problem for stop and wait:

Performance is determined by RTT, not
channel capacity!

Pipelined Transmission

• Keep multiple segments “in flight”
– Allows sender to make efficient use of the link

– Sequence numbers ensure receiver can distinguish segments

– We’ll talk about “how many” next time (windowing).

Sender Receiver Sender Receiver

Now what?

What should the sender do here?

A. Start sending all data again from 0.

B. Start sending all data again from 2.

C. Resend just 2, then continue with 4 afterwards.

Sender Receiver

Now what?

What information does the
sender need to make that
decision?

What is required by either party
to keep track?

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

Go-Back-N

• Retransmit from point of loss
• Segments between loss event

and retransmission are ignored

• “Go-back-N” if a timeout event
occurs

• Fast retransmit
• Don’t wait for timeout if we get

a duplicate ACK

Sender Receiver

Ti
m

eo
u

t

Go-Back-N

• Retransmit from point of loss
• Segments between loss event

and retransmission are ignored

• “Go-back-N” if a timeout event
occurs

• Fast retransmit
• Don’t wait for timeout if we get

N duplicate ACKs

Sender Receiver

Ti
m

eo
u

t

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

3. Selective repeat
• a.k.a selective reject, selective acknowledgement

Selective Repeat

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those
not ACKed

• Requires extra buffering and
state on the receiver

Sender Receiver

Ti
m

eo
u

t

ARQ Alternatives

• Can’t afford the RTT’s or timeouts?

• When?
• Broadcasting, with lots of receivers
• Very lossy or long-delay channels (e.g., space)

• Use redundancy – send more data
• Simple form: send the same message N times
• More efficient: use “erasure coding”

• For example, encode your data in 10 pieces such that the receiver can piece it together with
any subset of size 8.

Summary

• Guaranteeing reliability is impossible over a lossy channel
• We can do a lot of things to maximize our chances

• The things we can do are usually good enough in practice

• Tools available: acknowledgements, sequence numbers, timeouts, etc
• They help solve problems

• They often introduce other problems too, though – must be careful

• Several styles of ARQ protocols: trade-off throughput vs. complexity

