CS 43: Computer Networks
BitTorrent, DHTs, and CDNSs

Kevin Webb
Swarthmore College
February 15, 2022



Agenda

* BitTorrent
* Cooperative file transfers

* Briefly: Distributed Hash Tables
* Finding things without central authority

* Content distribution networks (CDNs)
* Add hosts to network to exploit locality

* Video streaming (DASH)



File Transfer Problem

* You want to distribute a file to a large number of people as quickly as
possible.



Traditional Client/Server




P2P Solution




Client-server vs. P2P: example

3.5

=-P2P
--Client-Server

w

N
ol

N

=
ol

=

Minimum Distribution Time
o
o1

o

0 5 10 15 20 25 30 35
N (Participants)

Let F = file size, client UL rate = u, server rate = U, d = client DL rate
Assumptions: F/u=1hour, u,=10u, d, . 2 u,



P2P Solution




Do we need a centralized server at all?
Would you use one for something?

\u \ail
%”‘ %‘*

N N AN

@ I A
(ﬁl <~ )’K//L X ’)/’/




P2P file distribution: BitTorrent

* File divided into chunks (commonly 256 KB)
* Peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file

2. &

u \\J
Node arrives ...
... obtains list

of peers from tracker V{
... and begins exchanging ==

file chunks with peers in torrent

P [
<« »



torrent files

e Contains address of tracker for the file
 Where can | find other peers?

* Contain a list of file chunks and their cryptographic hashes
* This ensures pieces are not modified



P2P file distribution: BitTorrent

Peer ioini . ﬁ 3 2
* Peer joining torrent: = T
* has no chunks, but will / \5_
accumulate them over time .;:Z
from other peers =
* registers with tracker to get list = - /P
of peers, connects to subset of Q‘/'%“p

—— =

peers (“neighbors”)

While downloading, peer uploads chunks to other peers
Peer may change peers with whom it exchanges chunks
Churn: peers may come and go

Once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent



Requesting Chunks

e At any given time, peers have different subsets of file chunks.

* Periodically, each asks peers for list of chunks that they have.



If you're trying to receive a file, which chunk
should you request next?

Random chunk. \ull
Most common chunk. S —
Least common chunk.

Some other chunk.

It doesn’t matter.

mooO®p



Requesting Chunks

e At any given time, peers have different subsets of file chunks.
* Periodically, each asks peers for list of chunks that they have.

* |In BitTorrent: Peers request rarest chunks first.



Sending Chunks

- A node sends chunks to those four peers

currently sending it chunks at highest rate

e other peers are choked (do not receive chunks)
* re-evaluate top 4 every ~10 secs

- Every 30 seconds: randomly select another
peer, start sending chunks

« “optimistically unchoke” this peer
* newly chosen peer may join top 4



Academic Interest in BitTorrent

* BitTorrent was enormously successful
* Large user base
* Lots of aggregate traffic
* Invented relatively recently

e Academic Projects
* Modifications to improve performance
 Modeling peer communications (auctions)
 Gaming the system (BitTyrant)



Getting rid of that server...

* Distribute the tracker information using a Distributed Hash Table
(DHT)

A DHT is a lookup structure.

* Maps keys to an arbitrary value.
* Works a lot like, well...a hash table.



Recall: Hash Function

* Mapping of any data to an integer

* E.g., md5sum, shal, etc.
* md5: 04c3416cadd85971a129dd1de86ceed9

* With a good (cryptographic) hash function:
e Hash values very likely to be unique
* Near-impossible to find collisions (hashes spread out)



Recall: Hash table

* N buckets

» Key-value pair is assigned bucket i
* i = HASH(key)%N

* Easy to look up value based on key

* Multiple key-value pairs assigned to each bucket



Distributed Hash Table (DHT)

e DHT: a distributed P2P database

* Distribute the (k, v) pairs across the peers
* key: ss number; value: human name
* key: file name; value: BT tracker peer(s)

« Same interface as standard HT: (key, value) pairs

» get(key) — send key to DHT, get back value
* put(key, value) — modify stored value at the given key



Overlay Network (P2P)

* A network made up of “virtual” or logical links

* Virtual links map to one or more physical links

o
w

i
i




Overlay Network (P2P)

* A network made up of “virtual” or logical links

* Virtual links map to one or more physical links




Challenges

 How do we assign (key, value) pairs to nodes?
* How do we find them again quickly?
* What happens if nodes join/leave?

* Basic idea:
« convert each key to an integer via hash
e Assign integer to each peer via hash
- Store (key, value) pair at the peer closest to the key



Circular DHT Overlay

1

15

12

10
3

e Simplest form: each peer only aware of immediate
successor and predecessor.



Circular DHT Overlay

W 1

15

12
10

e Simplest form: each peer only aware of immediate
successor and predecessor.



Circular DHT Overlay

1

15

12

10
3

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key



Circular DHT Overlay

1

15

12

10
3

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key (suppose it gives us 6)



Circular DHT Overlay

1

15

12

10
3

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key (suppose it gives us 6)



Circular DHT Overlay

1

15

12

10
3

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key (suppose it gives us 6)



Circular DHT Overlay

1
15 3
ra
12
5
10
3

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key (suppose it gives us 6)



Circular DHT Overlay

1

15 3

P4 If anybody

has it, it's my

12 SUCCessor.

5

10
8

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key (suppose it gives us 6)



Circular DHT Overlay

15

12

10

8 Checks key

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key (suppose it gives us 6)



Circular DHT Overlay

 Example: Node 1 wants key “Led Zeppelin IV”
* Hash the key (suppose it gives us 6)



Given N nodes, what is the complexity
(number of messages) of finding a value
when each peer knows its successor?

Can we do better?
A. O(logn) | How?

B. O(n) 15
C. 0O(n?) T

D. O(2") 10



Reducing Message Count

 Store successors that are 1, 2, 4, 8, ..., N/2 away.
e Can jump up to half way across the ring at once.

e Cut the search space in half - lookups take O(log N) messages.



Peer churn

15

12

10

1

Handling peer churn:
-peers may come and go (churn)

-each peer knows address of its
two successors

-each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor



More DHT Info

* How do nodes join/leave?
* How does cryptographic hashing work?
* How much state does each node store?



More DHT Info

* How do nodes join/leave?
* How does cryptographic hashing work?
* How much state does each node store?

* Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications
* Dynamo: Amazon’s Highly Available Key-value Store



High-Performance Content Distribution

* Problem:
You have a service that supplies lots of data. You want good
performance for all users!

(often “lots of data” means media files)



High-Performance Content Distribution

* CDNs applied to all sorts of traffic.

* You pay for service (e.g., Akamai), they’ll host your content very “close” to
many users.

* Major challenges:

 How do we direct the user to a nearby replica instead of the centralized
source?

* How do we determine which replica is the best to send them to?



Finding the CDN

* Three main options:
e Application redirect (e.g., HTTP)
e “Anycast” routing
* DNS resolution (most popular in practice)

 Example: CNN + Akamai



CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Content servers: serve media.



CNN + Akamai

Root DNS Servers

_— | T

com DNS servers ©org DNS servers edu DNS servers

N cnn.com pbs.org swarthmore.edu
DNS servers DNS servers DNS servers

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Content servers: serve media.



CNN + Akamai

Root DNS Servers

_— | T

com DNS servers ©org DNS servers edu DNS servers

N cnn.com pbs.org swarthmore.edu
DNS servers DNS servers DNS servers

Request: cnn.com/article \

Response: HTML with link akamai.net DNS servers
to cache.cnn.com media

www.cnn.com

l Akamai’s DNS response directs
user to selected server.

Retrieve media file.

v

Content servers: serve media.



CNN + Akamai

Root DNS Servers

_— | T

com DNS servers ©org DNS servers edu DNS servers

N cnn.com pbs.org swarthmore.edu
DNS servers DNS servers DNS servers

Request: cnn.com/article \

Response: HTML with link akamai.net DNS servers _
to cache.cnn.com media °c®

www.cnn.com

How to
choose?

l Akamai’s DNS response directs
user to selected server.

Retrieve media file.

v

Content servers: serve media.



Which measure is most important when
choosing a server? (CDN or otherwise)

A. RTT latency

B. Data transfer rate / throughput

C. Hardware ownership This is the CDN
operator’s secret sauce!

D. Geographic location

E. Some other measure(s) (such as?)



Streaming Media

* Straightforward approach: simple GET

* Challenges:
* Dynamic network characteristics
* Varying user device capabilities
* User mobility



Dynamic Adaptive Streaming over HTTP (DASH)

 Encode several versions of the same media file
* low / medium / high / ultra quality

e Break each file into chunks

* Create a “manifest” to map file versions to chunks / video time offset



Dynamic Adaptive Streaming over HTTP (DASH)
* Client requests manifest file, chooses version
* Requests new chunks as it plays existing ones

e Can switch between versions at any time!



summary

* Peer-to-peer architectures for:
* High performance: BitTorrent
* Decentralized lookup: DHTs

* CDNs: locating “good” replica for media server

* DASH: streaming despite dynamic conditions



