
CS 43: Computer Networks
Network Applications

Kevin Webb

Swarthmore College

February 8, 2022

Overview

• Last time: blocking and app structure

• Today: distributed network applications
• Common models, pros/cons, complexity sources

• Up next:
• depth into other protocols

What is a distributed application?

• Cooperating processes in a computer network

• Varying degrees of integration
• Loose: email, web browsing

• Medium: chat, Skype, remote execution, remote file systems

• Tight: process migration, distributed file systems

Network

Computer

Computer Computer

Computer

Computer

processes

messages

3

Interprocess Communication (IPC)

• In order to cooperate, need to communicate

• Achieved via IPC: interprocess communication
• mechanism for a process to communicate with another

Interprocess Communication (IPC)

• In order to cooperate, need to communicate

• Achieved via IPC: interprocess communication
• ability for a process to communicate with another

• On a single machine:
• Shared memory

Text

Data

Stack

P1 P2

Text

Data

Stack

Shared
Segment

Shared
Segment

Interprocess Communication (IPC)

• In order to cooperate, need to communicate

• Achieved via IPC: interprocess communication
• ability for a process to communicate with another

• On a single machine:
• Shared memory

• Across machines:
• We need other abstractions (message passing)

Text

Data

Stack

Text

Data

Stack

P1 P2

7

Sockets

• Process sends/receives messages to/from its socket

• Application has a few options, operating system handles the details

• Choice of transport protocol (TCP, UDP, ICMP, SCTP, etc.)

• Transport options (TCP: maximum segment size, delayed sends)

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Addressing Sockets

• IP address uniquely identifies one device network interface

130.58.68.164 130.58.68.137
(web.cs…)

130.58.68.9
(allspice.cs…)

9

Sockets

• Process sends/receives messages to/from its socket

• Application has a few options, operating system handles the details

• Choice of transport protocol (TCP, UDP, ICMP, SCTP, etc.)

• Transport options (TCP: maximum segment size, delayed sends)

• Must (uniquely) identify which socket we’re addressing
• App might have more than one socket

• Machine might have more than one process that is communicating

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Addressing Sockets

• IP address uniquely identifies one device network interface

• How can we address different services?

130.58.68.164

130.58.68.9
(allspice.cs…)

Allspice hosts:
email server process

file server process
ssh server process

…

Addressing Sockets

• IP address uniquely identifies one device network interface

• How can we address different services?

130.58.68.164

Addressing Sockets

• IP address uniquely identifies one device network interface

• How can we address different services?

130.58.68.164

App

TCP

IP

Ethernet
interface

App

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Addressing Sockets

• IP address identifies device interface

• Need another identifier: port
– 16-bit, unsigned integer value

– Differentiates sockets

Multiplexing

• Multiple signals communicating over a shared mechanism

• Transport protocols (e.g., TCP) enable multiplexing
over IP with ports

130.58.68.164

130.58.68.9
(allspice.cs…)

Allspice hosts:
email server process

file server process
ssh server process

…

What is a distributed application?

• Cooperating processes in a computer network

• Varying degrees of integration
• Loose: email, web browsing

• Medium: chat, Skype, remote execution, remote file systems

• Tight: process migration, distributed file systems

Network

Computer

Computer Computer

Computer

Computer

processes

messages

15

The Client/Server Model

• Client
• Short-lived process that makes requests
• “User-side” of application
• Initiates the communication (often via connect())

• Server
• Exports well-defined requests/response interface
• Long-lived process that waits for requests
• Upon receiving request, carries it out (may spawn processes)

Client Server

16

Internet

Client versus Server
Server:

• always-on host

• permanent (IP) address (rendezvous location)

• static port conventions (http:80, email:25, ssh:22)

• data centers for scaling

• may communicate with other servers to respond

Clients:

• may be intermittently connected

• may have dynamic (IP) addresses

• do not communicate directly with each other

Peer-to-Peer

• A peer talks directly with another peer
• No permanent rendezvous involved

• Symmetric responsibility (unlike client/server)

• Often used for:
• File sharing (Napster, BitTorrent)

• Games

• “NoSQL” data retrieval

• In general: “distributed systems”

Peer Peer

18

In a peer-to-peer architecture, are there
clients and servers?

A. Yes

B. No

Peer-to-Peer

• (+) Peers request service from other peers, provide service in
return to other peers

• self scalability – new peers bring new service capacity, as
well as new service demands

• (-) Complex management, difficult problems

Peer Peer

Advantages

• Speed: parallelism, less contention

• Reliability: redundancy, fault tolerance

• Scalability: incremental growth, economy of scale

• Geographic distribution: low latency, reliability

Network

Computer

Computer Computer

Computer

Computer

processes

messages

21

If one machine can process requests at
a rate of X per second, how quickly can
two machines process requests?

A. Slower than one machine (<X)

B. The same speed (X)

C. Faster than one machine, but not double (X-2X)

D. Twice as fast (2X)

E. More than twice as fast(>2X)

Disadvantages

• Fundamental problems of decentralized control
• State uncertainty: no shared memory or clock

• Action uncertainty: mutually conflicting decisions

• Distributed algorithms are complex

Network

Computer

Computer Computer

Computer

Computer

processes

messages

23

On a single system…

• You have a number of components
• CPU

• Memory

• Disk

• Power supply

• If any of these go wrong, you’re (usually) toast.

On multiple systems…

• New classes of failures (partial failures).
• A link might fail

• One (of many) processes might fail

• The network might be partitioned

On multiple systems…

• New classes of failures (partial failures).
• A link might fail

• One (of many) processes might fail

• The network might be partitioned

Introduces major complexity!

If a process sends a message, can it tell
the difference between a slow link and
a delivery failure?

If a process sends a message, can it tell
the difference between a slow link and
a delivery failure?

A. Yes

B. No

What should we do to handle a partial
failure? Under what circumstances, or
what types of distributed applications?

A. If one process fails or becomes unreachable, switch to a spare.

B. Pause or shut down the application until all connectivity and
processes are available.

C. Allow the application to keep running, even if not all processes can
communicate.

D. Handle the failure in some other way. (such as?)

Desirable Properties

• Consistency
• Nodes agree on the distributed system’s state

• Availability
• The system is able and willing to process requests

• Partition tolerance
• The system is robust to network (dis)connectivity

The CAP Theorem

• Consistency
• Nodes agree on the distributed system’s state

• Availability
• The system is able and willing to process requests

• Partition tolerance
• The system is robust to network (dis)connectivity

Choose two*.

Event Ordering

• It’s very useful if all nodes can agree on the order of events in a
distributed system

• For example: Two users trying to update a shared file across two
replicas

If two events occur (digitally or in the
“real world”), can we always tell which
happened first?

A. Yes

B. No

“Relativity of simultaneity”

• Example: observing car crashes

• Exception: causal relationship

If two events occur (digitally or in the
“real world”), can we always tell which
happened first?

A. Yes

B. No

“Relativity of simultaneity”

• Example: observing car crashes

• Exception: causal relationship

Event Ordering

• It’s very useful if all nodes can agree on the order of
events in a distributed system

• For example: Two users trying to update a shared file
across two replicas

• “Time, Clocks, and the Ordering of Events in a
Distributed System” by Leslie Lamport (1978)
• Establishes causal orderings

• Cited > 8000 13000 times

Causal Consistency Example

• Suppose we have the following scenario:
• Sally posts to Facebook, “Billy is missing!”

• (Billy is at a friend’s house, sees message, calls mom)

• Sally posts new message, “False alarm, he’s fine”

• Sally’s friend James posts, “What a relief!”

• NOT causally consistent:
• Third user, Henry, sees only:

Causal Consistency Example

• Suppose we have the following scenario:
• Sally posts to Facebook, “Billy is missing!”

• (Billy is at a friend’s house, sees message, calls mom)

• Sally posts new message, “False alarm, he’s fine”

• Sally’s friend James posts, “What a relief!”

• NOT causally consistent:
• Third user, Henry, sees only:

Causal Consistency Example

• Suppose we have the following scenario:
• Sally posts to Facebook, “Billy is missing!”

• (Billy is at a friend’s house, sees message, calls mom)

• Sally posts new message, “False alarm, he’s fine”

• Sally’s friend James posts, “What a relief!”

• Causally consistent version:
• Third user, Henry, sees only:

Because James had seen
Sally’s second post (which
caused his response),
Henry must also see it
prior to seeing James’s.

Summary

• IP address uniquely IDs machine, port IDs a process
• Addressing a socket requires both

• Client-server vs. peer-to-peer models

• Distributed systems are hard to build!
• Partial failures
• Ordering of events

• Take CS 87 for more details!

