
CS 43: Computer Networks
Structure, Threading, and Blocking

Kevin Webb

Swarthmore College

February 3, 2022



Announcements



Agenda

• Under-the-hood look at networking system calls
• Data buffering and blocking

• Processes, threads, and concurrency models

• Event-based, non-blocking I/O



Motivation: What is the goal of a network?

• Allow devices communicate with one another and coordinate their 
actions to work together.

(This was a slide from day 1)



Recall Inter-process Communication (IPC)

• Processes must communicate to cooperate

• Must have two mechanisms:
• Data transfer

• Synchronization



Inter-process Communication (IPC)

• Operating systems provide several IPC mechanisms (Take CS 45)
• files

• shared memory (in several ways)

• pipes

• …

• sockets

• Broadly, these fall into two categories:
1. Shared memory

2. Message passing

Only works on one computer 
(shared hardware).

Also, this is what you're most 
familiar with.



Thread Model (Shared Memory)

• Single process with multiple 
copies of execution resources.

• ONE shared virtual address space!
• All process memory shared by every 

thread.

• Threads coordinate by sharing 
variables (typically on heap)

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

Process

PC

SP

PC

SP

PC

SP

Execution 
Context

Note: this is technically not IPC (there's only one process), 
but this is the most common form of shared memory today.



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

Let's say process P1 wants to send 
data to process P2.

They execute on the same hardware 
and share an operating system.

They do NOT directly share any 
memory.



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P1 can send data into the pipe by 
calling:

write(…, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P1 can send data into the pipe by 
calling:

write(…, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe 0

P1 can send data into the pipe by 
calling:

write(fd, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy

pipe 1



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P1 can send data into the pipe by 
calling:

write(…, data pointer, count)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

data pointer, 3



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P2 can receive data from the pipe by 
calling:

read(…, data pointer, count)

data pointer: the start of location to 
copy into

count: how many bytes to copy
(at most)



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

P2 can receive data from the pipe by 
calling:

read(…, data pointer, count)

data pointer: the start of location to 
copy into

count: how many bytes to copy
(at most)

data pointer, 2



Message Passing IPC (Pipe)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

pipe

Data transfer: data moves in (write) and 
out (read) of OS message buffer

Synchronization: ?



Where is the synchronization* in message 
passing IPC?   (*application synchronization)

A. The OS adds synchronization.

B. Synchronization is determined by the order of sends and receives.

C. The communicating processes exchange synchronization messages 
(lock/unlock).

D. There is no synchronization mechanism.



Message Passing IPC (Socket)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

OS kernel

P1 P2

Let's say process P1 wants to send 
data to process P2.

They execute on the different 
hardware and share nothing but a 
network connection.

OS kernel

Network



Message Passing IPC (Socket)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

OS kernel OS kernel

Network



Message Passing IPC (Socket)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

OS kernel OS kernel

Network



Message Passing IPC (Socket)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)

OS kernel OS kernel

Network



Message Passing IPC (Socket)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

P1 can send data into the socket by calling:

send(…, data pointer, count, …)

data pointer: the start of data to copy

count: how many bytes to copy
(at most)



Message Passing IPC (Socket)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

The sender's OS will transmit the data 
to the receiver's OS when it's 
convenient to do so.

OS kernel OS kernel

Network



Message Passing IPC (Socket)
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

P2 can receive data from the pipe by calling:

recv(…, data pointer, count, …)

data pointer: the start of location to copy into

count: how many bytes to copy
(at most)



Questions about this model?
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

Don't worry about "how many" bytes yet.



Questions about this model?
Operating system

Stack

Text

Data

Heap

Operating system

Stack

Text

Data

Heap

P1 P2

OS kernel OS kernel

Network

Don't worry about "how many" bytes yet.

"Socket buffer"



Descriptor Table

• OS stores a table, per 
process, of descriptors

Process

Kernel



Descriptors
Where do descriptors come from?

What are they?



Descriptor Table

• OS stores a table, per 
process, of descriptors

Process

Kernel

0

1

2

stdin stdout stderr

…



socket()

• socket() returns a 
socket descriptor

• Indexes into table

Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

7



socket()

• OS stores details of the 
socket, connection, and 
pointers to buffers

Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

7



socket()
Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

7

• OS stores details of the 
socket, connection, and 
pointers to buffers

Buffer: Temporary 
data storage location



Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

7

…

Application buffer / storage space:



Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

7

…

Application buffer / storage space:

Internet



Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

7

…

Application buffer / storage space:

recv(): Move data from 
socket buffer to process.

Internet



Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

7

…

Application buffer / storage space:

send(): Move data from 
process to socket buffer

Internet



Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer      , Receive buffer

7

…

Application buffer / storage space:

Challenge: Your process does 
NOT know what is stored here!

Free space? Is data here?



recv()
Process

Kernel

0

1

2

7

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: …, Local port: …
Send buffer      , Receive buffer

r_buf (size 200)

Is data here?



What should we do if the receive socket 
buffer is empty?  If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Socket buffer (receive)

Empty

100 bytes

Two Scenarios:

r_buf (size 200)



What should we do if the receive socket 
buffer is empty?  If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Empty 100 Bytes

A Block Block

B Block Copy 100 bytes

C Copy 0 bytes Block

D Copy 0 bytes Copy 100 bytes

E Something else

Socket buffer (receive)

Empty

Two Scenarios:

r_buf (size 200)

100 bytes

"Block" means pause the calling process.



What should we do if the send socket 
buffer is full?  If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, s_buf, 200, 0);

Socket buffer (send)

Full

Two Scenarios:

s_buf (size 200)

100 bytes



What should we do if the send socket 
buffer is full?  If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, s_buf, 200, 0);

Full 100 Bytes

A Return 0 Copy 100 bytes

B Block Copy 100 bytes

C Return 0 Block

D Block Block

E Something else

Socket buffer (send)

Full

Two Scenarios:

s_buf (size 200)

100 bytes



Blocking Implications

• DO NOT assume that you will recv() all of the bytes that you ask for.

• DO NOT assume that you are done receiving.

• ALWAYS receive in a loop!*

• DO NOT assume that you will send() all of the data you ask the kernel 
to copy.

• Keep track of where you are in the data you want to send.

• ALWAYS send in a loop!*

* Unless you’re dealing with a single byte, which is rare.



ALWAYS check send() return value!

• When send() return value is less than the data size, you are 
responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:



ALWAYS check send() return value!

• When send() return value is less than the data size, you are 
responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

60

Data sent: 60
Data to send: 130

Data:



ALWAYS check send() return value!

• When send() return value is less than the data size, you are 
responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

Data sent: 60
Data to send: 130

// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0); 

Data:

60



ALWAYS check send() return value!

• When send() return value is less than the data size, you are 
responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

Data sent: 60
Data to send: 130

// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0); 

Data:

?

Repeat until all bytes are sent. (data_sent == data_to_send)…

60



Blocking Summary

send()

• Blocks when socket buffer for 
sending is full

• Returns less than requested size 
when buffer cannot hold full size

recv()

• Blocks when socket buffer for 
receiving is empty

• Returns less than requested size 
when buffer has less than full 
size

Always check the return value!



Concurrency

• Think you’re the only one talking to that server?

Server



Without Concurrency

• Think you’re the only one talking to that server?

Web Server recv() request



Without Concurrency

• Think you’re the only one talking to that server?

Web Server recv() request

Client taking its time…

Server Process 
Blocked!

Ready to send, but server still 
blocked on first client.

If only we could handle these 
connections separately…



Multiple Processes

Web Server
Server fork()s

Child process recv()s
Web 

Server
Web 

Server
Services the new 
client request

Server fork()s



Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process

• Inherits descriptor table

• Does not share memory
• New memory address space

• Scheduled independently
• Separate execution context

• Can block independently

Spawned Thread

• Shares descriptor table

• Shares memory
• Uses parent’s address space

• Scheduled independently
• Separate execution context

• Can block independently



Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process

• Inherits descriptor table

• Does not share memory
• New memory address space

• Scheduled independently
• Separate execution context

• Can block independently

Spawned Thread

• Shares descriptor table

• Shares memory
• Uses parent’s address space

• Scheduled independently
• Separate execution context

• Can block independently

Often, we don’t need the extra isolation of a separate address space.
Faster to skip creating it and share with parent – threading.



Threads & Sharing

• Global variables and static objects are shared
• Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared
• Allocated from heap with malloc/free or new/delete

• Local variables are not shared 
• Refer to data on the stack

• Each thread has its own stack

• Never pass/share/store a pointer to a local variable on another thread’s stack



Whether processes or threads…

• Several benefits
• Modularizes code:

• one piece accepts connections, another services them

• Each can be scheduled on a separate CPU

• Blocking I/O can be overlapped



Which benefit is the most critical?

A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.



Whether processes or threads…

• Several benefits
• Modularizes code:

• one piece accepts connections, another services them

• Each can be scheduled on a separate CPU

• Blocking I/O can be overlapped

• Still not maximum efficiency…
• Creating/destroying threads still takes time

• Requires memory to store thread execution state

• Lots of context switching overhead



Non-blocking I/O

• A socket can be put into "non blocking" mode
• For a single call to send/recv, pass flag (MSG_DONTWAIT)

• To apply to socket for all calls, use fcntl (file control)

int sock, result, flags = 0;

sock = socket(AF_INET, SOCK_STREAM, 0);

result = fcntl(sock, F_SETFL, flags|O_NONBLOCK)

(always check result – 0 on success)



Non-blocking I/O

• With O_NONBLOCK set on a socket (or MSG_DONTWAIT flag)
• No operations will block!

• On recv(), if socket buffer is empty:
• returns -1, errno is EAGAIN or EWOULDBLOCK

• On send(), if socket buffer is full:
• returns -1, errno is EAGAIN or EWOULDBLOCK



How about…

server_socket = socket(), bind(), listen()

connections = []

while (1) {

new_connection = accept(server_socket)

if new_connection != -1, add it to connections

for connection in connections:

recv(connection, …)  // Try to receive

send(connection, …)  // Try to send, if needed

}



Will this work?
server_socket = socket(), bind(), listen()

connections = []

while (1) {

new_connection = accept(server_socket)

if new_connection != -1, add it to connections

for connection in connections:

recv(connection, …)  // Try to receive

send(connection, …)  // Try to send, if needed

}

A. Yes, this will work.

B. No, this will execute too slowly.

C. No, this will use too many 
resources.

D. No, this will still block.



Event-based Concurrency

• Rather than checking over and over, let the OS tell us when data can 
be read/written

• Create set of FDs we want to read and write

• Tell system to block until at least one of those is ready for us to use.  
The OS worries about selecting which one(s).

select()



select()

• More interesting example in the 
select_tut man page.

• Beej’s guide also has a good 
example.

• You’ll use it in a future lab!

int main(void) {

fd_set rfds;

struct timeval tv;

int retval;

/* Watch stdin (fd 0) to see when it has input. */

FD_ZERO(&rfds);

FD_SET(0, &rfds);

/* Wait up to five seconds. */

tv.tv_sec = 5;

tv.tv_usec = 0;

retval = select(1, &rfds, NULL, NULL, &tv);

/* Don't rely on the value of tv now! */

if (retval == -1)

perror("select()");

else if (retval)

printf("Data is available now.\n");

/* FD_ISSET(0, &rfds) will be true. */

else

printf("No data within five seconds.\n");

}



Event-based Concurrency

• Rather than checking over and over, let the OS tell us when data can 
be read/written

• Tell system to block until at least one of those is ready for us to use.  
The OS worries about selecting which one(s).

• Only one process/thread (or one per core)
• No time wasted on context switching

• No memory overhead for many processes/threads



Concurrency, so far…

Threads/Processes

• Create a new process/thread 
each time a new connection 
arrives

• One thread per connection

Event-based Concurrency

• Add sockets to descriptor set, 
use select to wait until one of 
them can do something

• One thread in total



Other Concurrency Patterns

Work Queue model:
(a.k.a boss/worker or master/worker)

• Create many threads once and reuse them.

Each worker can perform I/O and block independently of the other.
Each worker can fail independently without stopping the system.

Pool of worker processes (or threads)

Controller w/ queued connections:



Other Concurrency Patterns

Work Queue model:
(a.k.a boss/worker or master/worker)

• More complex: each thread takes several connections and uses
event-based concurrency to handle its subset

Each worker can perform I/O and block independently of the other.
Each worker can fail independently without stopping the system.

Pool of worker processes (or threads)

Controller w/ queued connections:



Many Other Models!

• Staged Event-Driven Architecture (SEDA)

• Asymmetric Multi-Process
Event-Driven (AMPED) 



Summary

• A network enables communication between processes
• Many ways to structure communication, most require shared memory

• For networks, we use sockets, which allows OS to buffer data

• OS manages socket buffers on behalf of processes
• Asking for an operation that can't be performed will block the process

• e.g., recv() from empty buffer or send() to full buffer

• Because blocking pauses the caller, must carefully structure apps


