
CS 43: Computer Networks
HTTP and the Web

Kevin Webb

Swarthmore College

February 1, 2022

Announcements / Reminders

• Register your clicker!

• CS Mentorship program needs your help

• Clicker frequency test

What IS A Web Browser?

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

HTTP Overview

2. Browser establishes connection with server.
Looks up “some.host.name.tld”
Calls connect()

HTTP Overview

3. Browser requests the corresponding data.
GET /directory/name/file.ext HTTP/1.0
Host: some.host.name.tld
[other optional fields, for example:]
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
Accept-language: en
[Blank line]

HTTP Overview

4. Server responds with the requested data.
HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
[Blank line]
(Data data data data…)

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

<html>
<head>
<title>Page title!</title>

</head>

<body>
<p>a paragraph of text</p>

...

</body>
</html>

HTTP Overview

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches other objects, and closes the
connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

HTTP Overview (Lab 1)

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches other objects, and closes the
connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at example server.
Anything typed is sent to server on port 80
at demo.cs.swarthmore.edu

telnet demo.cs.swarthmore.edu 80

2. Type in a GET HTTP request:

GET / HTTP/1.0

Host: demo.cs.swarthmore.edu

(blank line)

By typing this in (hit enter twice), you send
this minimal (but complete)
GET request to the HTTP server.

3. Look at response message sent by HTTP server!

Trying out HTTP (client side) for yourself

Example (live demo)

Example

Response
headers

Response body

(This is what you should be
saving to file in lab 1.)

Request

Note!

This server is intentionally NOT using
encryption, to make it easier to work
with for lab 1!

HTTPS (live demo)

• Telnet transfers unencrypted data ("clear text")
• Great for learning

• Not so great for real world security / privacy

• For a similar (interactive) command line experience with encryption:
• openssl s_client -crlf -connect server.name:443

• two types of HTTP messages: request, response

• HTTP request message:
• ASCII (human-readable format)

request line
(GET, POST,
HEAD, etc. commands)

header
lines

carriage return,
line feed

GET /~kwebb/index.html HTTP/1.1\r\n

Host: web.cs.swarthmore.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character (CR)

line-feed character (LF)

HTTP request message

Why do we have these \r\n (CRLF) things all
over the place?

A. They’re generated when the user hits ‘enter’.

B. They signal the end of a field or section.

C. They’re important for some other reason.

D. They’re an unnecessary protocol artifact.

GET /~kwebb/index.html HTTP/1.1\r\n

Host: web.cs.swarthmore.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

How else might we delineate messages?
(What are the good/bad properties of each of these ideas?)

A. There’s not much else we can do.

B. Force all messages to be the same size.

C. Send the message size prior to the message.

D. Some other way (discuss).

HTTP is all text…

• Makes the protocol simple
• Easy to delineate message (\r\n)

• (Relatively) human-readable

• No worries about encoding or formatting data

• Variable length data

• Not the most efficient
• Many protocols use binary fields

• Sending “12345678” as a string is 8 bytes

• As an integer, 12345678 needs only 4 bytes

• The headers may come in any order

• Requires string parsing / processing

HTTP is all text…

• The HTTP PROTOCOL is all text
• That is, the messages that are required (request and response)

• All headers are text

• The BODY of a message might NOT be text

• This distinction is critically important for lab 1!
• Fine to use string functions on HTTP messages

• You better not use string functions on body data

Visualizing HTTP: telnet

Visualizing HTTP: wireshark

HTTP/1.0 (1996):

• GET

• Requests page.

• POST

• Uploads user response
to a form.

• HEAD

• asks server to leave
requested object out of
response

HTTP/1.1 (1997 & 1999):

• GET, POST, HEAD

• PUT

• uploads file in entity
body to path specified in
URL field

• DELETE

• deletes file specified in
the URL field

• TRACE, OPTIONS,
CONNECT, PATCH

Request Method Types (“verbs”)

HTTP/1.0 (1996):

• GET

• Requests page.

• POST

• Uploads user response
to a form.

• HEAD

• asks server to leave
requested object out of
response

HTTP/1.1 (1997 & 1999):

• GET, POST, HEAD

• PUT

• uploads file in entity
body to path specified in
URL field

• DELETE

• deletes file specified in
the URL field

• TRACE, OPTIONS,
CONNECT, PATCH

• (+) Persistent connections

Request Method Types (“verbs”)

HTTP/1.0 (1996):

• GET

• Requests page.

• POST

• Uploads user response
to a form.

• HEAD

• asks server to leave
requested object out of
response

HTTP/1.1 (1997 & 1999):

• GET, POST, HEAD

• PUT

• uploads file in entity
body to path specified in
URL field

• DELETE

• deletes file specified in
the URL field

• TRACE, OPTIONS,
CONNECT, PATCH

• (+) Persistent connections

Request Method Types (“verbs”)

GET (in-URL) method:

• uses GET method

• input is uploaded in URL field of request line:

POST method:

• web page often includes form input

• input is uploaded to server in request entity body

www.somesite.com/animalsearch?monkeys&banana

Requests with user input / form data

GET vs. POST

• GET should only be used for idempotent requests
• Idempotence: an operation can be applied multiple times

without changing the result (the final state is the same)

GET vs. POST

• GET should only be used for idempotent requests
• Idempotence: an operation can be applied multiple times

without changing the result (the final state is the same)

I. Incrementing a variable
II. Assigning a value to a variable

III. Allocating memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

How many of the following operations are idempotent?

GET vs. POST

• GET should only be used for idempotent requests.
• Idempotence: an operation can be applied multiple times

without changing the result (the final state is the same)

• POST should be used when…
• A request changes the state of the server (or underlying DB)

• Sending a request twice would be harmful
• (Some) browsers / sites warn about sending multiple POST requests

• Users are inputting non-ASCII characters

• Input may be very large

When might you use GET vs. POST?

GET POST

A. Forum post Search terms, Pizza order

B. Search terms, Pizza order Forum post

C. Search terms Forum post, Pizza order

D. Forum post, Search terms, Pizza Order

E. Forum post, Search terms, Pizza Order

status line
(protocol
status code
status phrase)

response
header

lines

response body,
e.g., requested
HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-1\r\n

\r\n

data data data data data ...

HTTP response message

200 OK

• Request succeeded, requested object later in this message (body)

301 Moved Permanently

• Requested object moved, new location specified later in this message (Location:)

400 Bad Request

• Request message not understood by server

403 Forbidden

• You don’t have permission to read the object

404 Not Found

• Requested document not found on this server

505 HTTP Version Not Supported

• Status code appears in first line of server-to-client response message.
• Some common response codes:

HTTP response status codes

420 Enhance Your Calm (twitter)

• Slow down, you’re being rate limited

451 Unavailable for Legal Reasons

• Censorship?

418 I’m a Teapot

• Response from a teapot requested to brew a beverage
(announced Apr 1)

HTTP response status codes

• Status code appears in first line of server-to-client response message.
• Many others too. Search "list of HTTP status codes".
• Some of my favorites:

State(less) Protocols

(XKCD #869, “Server Attention Span”)

State(less) Protocols

• Original web: simple document retrieval

• Server is not required to keep state between connections
(often it might want to though!)

• Client is not required to identify itself
(server might refuse to talk otherwise though!)

Many web sites use cookies

Four components:

1) cookie header line of HTTP
response message

2) cookie header line in next
HTTP request message

3) cookie file kept on user’s host,
managed by user’s browser

4) back-end database at Web site

Example:

• Susan always accesses the Web from her PC

• She visits specific e-commerce site for the
first time

• When initial HTTP requests arrives at site,
site creates:

• unique ID

• entry in backend database for ID

Keeping state: cookies

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response
set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

What cookies can be used for:
• authorization

• shopping carts

• recommendations

• user session state (Web e-mail)

How to keep “state”:
• protocol endpoints: maintain state at sender/receiver over

multiple transactions
• cookies: http message headers carry state

Cookies

Cookies: Pros / Cons

• Cookies permit sites to learn a lot about you

• You may supply name and e-mail to sites (and more!)

• 3rd party cookies (from ad networks, etc) can follow you across
multiple sites.
• Ever visit a website, and the next day ALL your ads are from them?

• You COULD turn them off
• But good luck doing anything on the internet!

HTTP Performance

non-persistent HTTP

• at most one object sent over
TCP connection

• connection then closed

• downloading multiple objects
requires multiple connections

persistent HTTP

• multiple objects can be
sent over single TCP
connection between
client, server

object: image, script, stylesheet, etc.

HTTP Connections

non-persistent HTTP

for object on web page:

connect to server

request object

receive object

close connection

persistent HTTP

connect to server

for object on web page:

request object

receive object

close connection

Pseudocode Example

Round Trip Time (RTT): time
for a small packet to travel
from client to server and
response to come back

Connection establishment (via
TCP) requires one RTT.

Connection must be
established prior to any
other communication.

RTT

time time

Round Trip Time (RTT)

Non-Persistent HTTP Connections can
download a website with several objects in…

A. One RTT + (File transfer time per object)

B. (One RTT + File transfer time) per object

C. Two RTTs

D. Two RTTs + (File transfer time per object)

E. (Two RTTS + File transfer time) per object

RTT

time time

Round Trip Time (RTT): time for a small
packet to travel from client to server
and back

HTTP response time:

• one RTT to initiate TCP connection

• one RTT for HTTP request and first
few bytes of HTTP response to
return

• file transmission time

• non-persistent HTTP response time
=

2RTT+ file transmission time

For each object

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Non-persistent HTTP: response time

file
received

Persistent Connection

time to
transmit
file

RTT

request
file

RTT

time time

<html>
<head>
<title>Page title!</title>

</head>

<body>
<p>a paragraph of text</p>

...

</body>
</html>

Non-persistent HTTP issues:

• requires 2 RTTs per object

• OS overhead for each TCP
connection

• browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP:

• server leaves connection
open after sending
response

• subsequent HTTP
messages between same
client/server sent over
open connection

• client sends requests as
soon as it encounters a
referenced object

• as little as one RTT for all
the referenced objects

Comparison

HTTP 2.0 (2015)

• Adds some new features for better efficiency
• Encodes HTTP messages into a binary format to reduce size

• Can transmit data from multiple objects concurrently instead of in series

• (several other smaller changes)

• Most browsers support it

• Major sites support it (those with enough volume to actually benefit)

HTTP/1.0 (1996):

• GET

• Requests page.

• POST

• Uploads user response
to a form.

• HEAD

• asks server to leave
requested object out of
response

HTTP/1.1 (1997 & 1999):

• GET, POST, HEAD

• PUT

• uploads file in entity
body to path specified in
URL field

• DELETE

• deletes file specified in
the URL field

• TRACE, OPTIONS,
CONNECT, PATCH

• (+) Persistent connections

Other HTTP Verbs

CRUD and REST

• Create, Read, Update, Delete
(CRUD)
• Common pattern for storing

information in an application

• Example: twitter
• Create: produce new tweet

• Read: get tweet(s) from [criteria]

• Update: edit tweet (settings)

• Delete: remove tweet

CRUD and REST

• Create, Read, Update, Delete
(CRUD)
• Common pattern for storing

information in an application

• Example: twitter
• Create: produce new tweet

• Read: get tweet(s) from [criteria]

• Update: edit tweet (settings)

• Delete: remove tweet

• Representational state transfer
(REST)
• Use HTTP verbs to implement the

common CRUD model

• Create -> PUT (or POST)

• Read -> GET

• Update -> PUT (or PATCH)

• Delete -> DELETE

Internet Protocol Suite ("Hourglass model")

HTTP FTP Zoom…

Ethernet Wifi Bluetooth…

TCP UDP

IP

"Narrow Waist"

If CRUD is your application's model…

HTTP

Ethernet Wifi Bluetooth…

TCP

IP

REST API

Summary

• HTTP is a text-based protocol for document retrieval
• request and response message types

• requests have verbs (GET, POST, etc.)

• responses have status codes / messages

• message sender can add arbitrary headers

• CRLFs to delineate messages

• HTTP is stateless, but "cookie" headers allow persistent identification

• Managing connections is important for performance

• REST APIs over HTTP are super common (taking over?)

