
CS 43: Computer Networks
Security

Kevin Webb

Swarthmore College

December 7, 2017

Topics

• Spying on network traffic

• Classic problem: buffer overflow attack

• Monetizing botnets

Once upon a time…

• The Internet was “a group of mutually trusting
users attached to a transparent network.”

• Result: Not much built-in security

– Email headers

– IP address spoofing

– IP prefix hijacking

– …

Once upon a time…

• Trust is gone, is the network still transparent?

• Switches help, cables can still be tapped…

• What about wireless?

• Wireless example/demo

Encryption

• Multiple options:

– End to end (SSL, TLS): Browsers use this.

– Link layer (WEP, WPA): Access point uses this.

• Facebook: enabled E2E encryption?

– July 2013

Cryptography

• Dates back 1000’s of years

• Simple substitution cipher (Caesar cipher)

– Shift each letter by three (a -> d, b -> e, …)

– “Hello world” becomes “khoor zruog”

• Many other, significantly better ciphers since…

– De facto standard today: AES

(Symmetric) Cryptography

• Problem: Encrypting with a cipher requires
shared “key” information. (prior to 1970’s)

• Sophisticated cipher doesn’t help if we have to
communicate the secret key!

Box Analogy

• You want to ship a package to someone.

• You trust it won’t be stolen, but might be read.

Box Analogy

• You want to ship a package to someone.

• You trust it won’t be stolen, but might be read.

Box Analogy

• You want to ship a package to someone.

• You trust it won’t be stolen, but might be read.

Box Analogy

• You want to ship a package to someone.

• You trust it won’t be stolen, but might be read.

Box Analogy

• You want to ship a package to someone.

• You trust it won’t be stolen, but might be read.

Box Analogy

• You want to ship a package to someone.

• You trust it won’t be stolen, but might be read.

?Shared Secret!

(Asymmetric) Public Key Crypto

• Analogy: locking and unlocking are asymmetric

– Anybody can lock

– Very difficult to unlock without the key

• Let’s apply this to data.

– We need a function that’s easy to apply in one
direction and difficult in the other.

Factoring

• Multiplication is easy.

• Factoring (primes) is hard.

• 617077493 is the product of two primes.

– What are they?

RSA Algorithm

• Rivest, Shamir, Adleman (RSA)

• Everyone computes two items:

– Public key (kind of like a pad lock, ok if seen)

– Private key (keep this to yourself)

• Receiver distributes public key, sender uses it
to craft message that only receiver can read.

RSA Algorithm

• Choose two prime numbers of similar length.

– P = 41 and Q = 29

• Compute N = P * Q

– N = 41 * 29 = 1189

• Compute phi(N) = (P – 1) * (Q – 1)

– phi(N) = (41 – 1) * (29 – 1) = 40 * 28 = 1120

• Choose a value e, 1 < e < 1120

– e must not divide 1120, we’ll pick 13

RSA Algorithm

P = 41 and Q = 29

N = 1189

phi(N) = 1120

e = 13

• Compute “modular multiplicative inverse” of e

– Need: (d * e) % phi(N) = 1

– d = 517

RSA Algorithm

P = 41 and Q = 29

N = 1189, phi(N) = 1120, e = 13, d = 517

• Public key is (n, e), private key is (n, d)

• To encrypt message m = 1000:

– Take 100013 % 1189 = 611

• To decrypt message 611:

– 611517 % 1189 = 1000

In Practice…

• Result: we can exchange secure messages with
parties we’ve never talked to before!
– (e.g., your bank)

• Exchange a secure message containing shared
secret via RSA (asymmetric crypto)

• Subsequently use shared secret for
conventional symmetric crypto (e.g., AES)

Classic Attack: Buffer Overflow

• Encryption ruining your (evil) day?

• Let’s try taking control instead!

Recall: The Stack

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee

…

First Argument to Callee

Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s
frame.

Callee’s
frame.

Shared by caller
and callee.

A well intentioned program…

• Suppose we have a protocol that does recv()
until it finds \r\n\r\n.

buf[0]

buf[999]

Ret urn add ress

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Suppose we have a protocol that does recv()
until it finds \r\n\r\n.

G E T /

i n d e x

. h t m l

\0 \0 \0 \0 \0

Ret urn add ress

Stack
Memory

…

char buf[1000]

A well intentioned program…

• What happens if we’re sent more than 1000
bytes before we see \r\n\r\n? Keep writing…

G E T /

i n d e x

. h t m l

D D D D D

D D D D

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Uh, if we can overwrite the return address…

• We can control execution on return.

G E T /

i n d e x

. h t m l

D D D D D

D D D D

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Let’s send malicious data that contains a ptr.

G E T /

i n d e x

. h t m l

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Let’s send malicious data that contains a ptr.

G E T /

i n d e x

. h t m l

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Oh, and also some commands up here…

E V I L

C O D E

H E R E

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Function returns, executes evil code.

E V I L

C O D E

H E R E

D D D D D

PTR PTR PTR PTR

Stack
Memory

…

char buf[1000]

A well intentioned program…

• Improve chances: “NO OP sled”

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

E V I L

C O D E

PTR PTR PTR PTR

Stack
Memory

…
char buf[1000]

A well intentioned program…

• See: “Smashing the Stack for Fun and Profit”

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

E V I L

C O D E

PTR PTR PTR PTR

Stack
Memory

…
char buf[1000]

Input from Network

• Programs that receive user input are
susceptible to buffer overflow (& more) attacks.

• Potentially much more problematic to receive
input from the Internet!

• If attackers can take over program’s control
flow, they can execute anything.

Relevant XKCD #327

Alt text: Her daughter is named Help I'm trapped in a driver's license factory.

Bottom line: be careful about what you’re accepting from the network!
Make sure the memory you’re using is bounded and that the data is valid!

1988: The Morris Worm

• Cornell student Robert Morris

• Exploited buffer overflow in fingerd
– It had a 512-byte buffer, he exploited it to execute

/bin/sh, giving him shell access

• Told compromised host to download his worm
code, it self-replicated by exploiting others

• Claimed “wanted to gauge size of Internet”

1988: The Morris Worm

• Worm did a check to see if it needed to
replicate itself
– If machine already compromised (process

running) don’t infect again.

• Worried about admins putting up fake process
– Replicate anyway, at random, 1/7 times.

• This effectively shut down LOTS of machines.

1988: The Morris Worm

• Robert Morris:

– First person convicted under Computer Fraud and
Abuse Act

– Sentenced to three years probation, 400 hours
community service, $10,000

• Where is he now?

Exploits Today

• Worms

• Trojans (trick user)

• Browser exploits (drive-by downloads)

• Often used in BotNets

BotNets

• Having access to 1000’s of machines is
lucrative!

• Send Spam.

• Flood target with traffic (DDoS).

• Steal data (CC #’s, state secrets, etc.).

• Mine bitcoins.

Questions?

Final Exam

• Friday, December 15, at 9:00

• LOCATION: SCI 199

