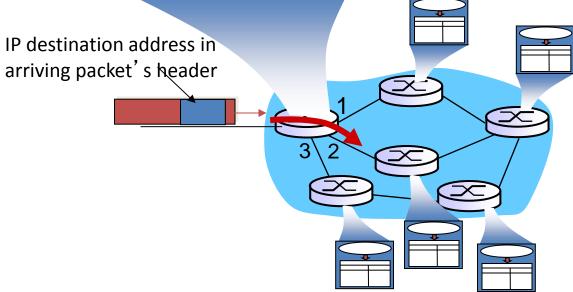
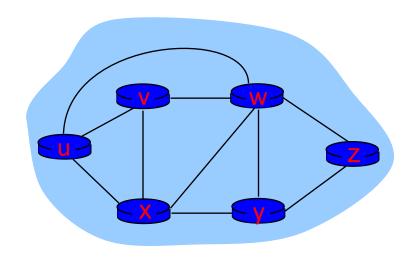

CS 43: Computer Networks Routing


Kevin Webb Swarthmore College November 14, 2017

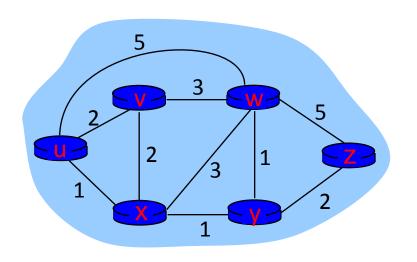
Interplay between routing, forwarding



<u>routing</u> algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Graph Abstraction



graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Link Cost

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

Cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

Key question: what is the least-cost path between u and z? *Routing algorithm:* algorithm that finds that least cost path

How should link costs be determined?

- A. They should all be equal.
- B. They should be a function of link capacity.
- C. They should take current traffic characteristics into account (congestion, delay, etc.).
- D. They should be manually determined by network administrators.
- E. They should be determined in some other way.

Link Cost

Typically simple: all links are equal

Least-cost paths => shortest paths (hop count)

- Network operators add policy exceptions
 - Lower operational costs
 - Peering agreements
 - Security concerns

Routing Challenges

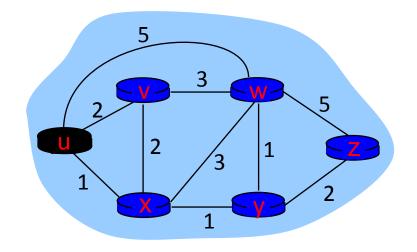
- How to choose best path?
 - Defining "best" can be slippery

- How to scale to millions of users?
 - Minimize control messages and routing table size

- How to adapt quickly to failures or changes?
 - Node and link failures, plus message loss

How much information should a router know about the network?

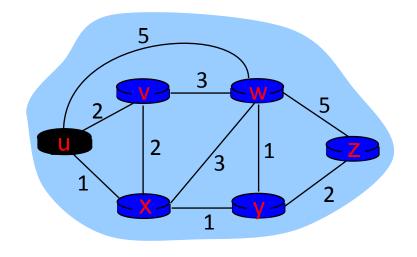
- A. The next hop and cost of forwarding to its neighbor(s).
- B. The next hop and cost of forwarding to any destination.
- C. The status and cost of every link in the network.


Less state.

Better decisions.

D. Some other amount of information.

Routing Table?


Dest	Next Hop
V	V
X	X
W	X
Υ	X
Z	X

 At a minimum, the routing table at U needs to know the next hop for each possible destination.

Routing Table

Dest	Next Hop	Cost (Path)
V	V	2
X	X	1
W	X	4
Υ	X	2
Z	X	4

- At a minimum, the routing table at U needs to know the next hop for each possible destination.
- Probably want more info (e.g., path cost, maybe path itself)
- This is a key difference between routing & forwarding!

Routing Algorithm Classes

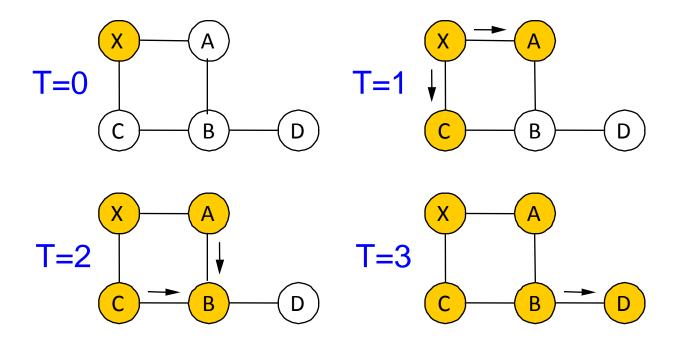
Link State (Global)

- Routers maintain cost of each link in the network.
- Connectivity/cost changes flooded to all routers.
- Converges quickly (less inconsistency, looping, etc.).
- Limited network sizes.

Distance Vector (Decentralized)

- Routers maintain next hop & cost of each destination.
- Connectivity/cost changes iteratively propagate from neighbor to neighbor.
- Requires multiple rounds to converge.
- Scales to large networks.

Link-state Routing


- Two phases
 - Reliable flooding
 - Tell all routers what you know about your links
 - Typically in response to event: link failure/recovery/cost
 - Path calculation (Dijkstra's algorithm)
 - Each router computes best path over complete network
- Motivation
 - Global information allows optimal routing
 - Straightforward to implement and verify

Flooding LSAs

- Routers transmit Link State Advertisement (LSA) on links
 - A neighboring router forwards out all links except incoming
 - Keep a copy locally; don't forward previously-seen LSAs
- Challenges
 - Packet loss
 - Out-of-order arrival
- Solutions
 - Acknowledgments and retransmissions
 - Sequence numbers
 - Time-to-live for each packet

Flooding Example

LSA generated by X at T=0

Dijkstra's Algorithm

1 Initialization:

- 2 N' = $\{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

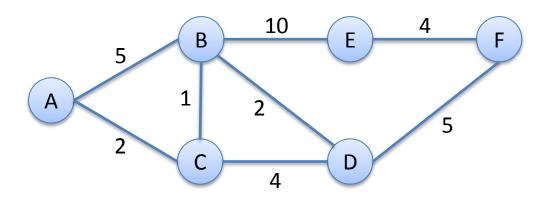
Nodes we've determined lowest-cost path for already.

Best known cost for reaching node v.

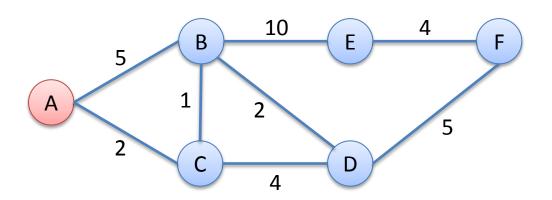
Dijkstra's Algorithm

1 Initialization:

```
N' = {u}
for all nodes v
if v adjacent to u
then D(v) = c(u,v)
else D(v) = ∞
```


Only know best route to self so far.

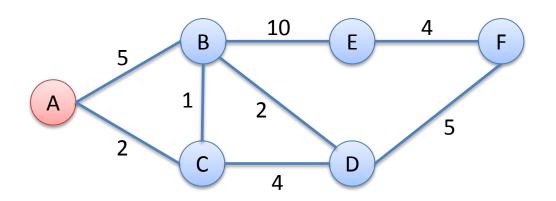
For every other router, set it's known distance to link cost if it's a neighbor. Otherwise, set it to infinity.


Dijkstra's Algorithm

```
1 Initialization:
                                     Pick the node (w) that isn't already in N'
   N' = \{u\}
                                     with the shortest distance (least cost
   for all nodes v
                                     path) and add it to N'.
    if v adjacent to u
5
                                     Check all possible destinations from w.
       then D(v) = c(u,v)
                                     If going through w gives a lower cost to
    else D(v) = \infty
                                     destination v, update D(v).
7
   Loop
    find w not in N' such that D(w) is a minimum
10 add w to N'
    update D(v) for all v adjacent to w and not in N':
    D(v) = min(D(v), D(w) + c(w,v))
    /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's Algorithm Example

- Goal: From the perspective of node A:
 - Determine shortest path to every destination
- Other perspectives:
 - Look up "Dijkstra's Algorithm" on YouTube

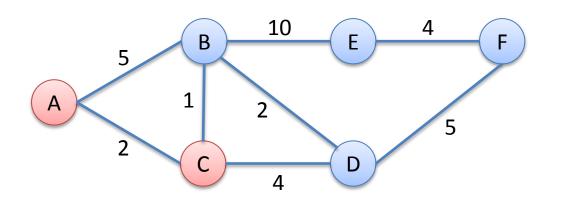


Previous Step

Dest	Path	Cost D(v)
А		
В		
С		
D		
E		
F		

This Step

Dest	Path	Cost D(v)
Α	Α	0
В	В	5
С	С	2
D	?	∞
Е	?	∞
F	?	∞

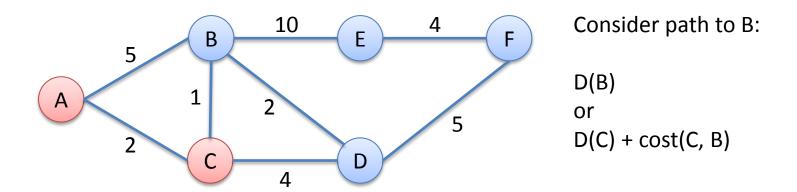

Previous Step

Dest	Path	Cost D(v)
Α	А	0
В	В	5
С	С	2
D	?	∞
E	?	∞
F	?	∞

Pick Min

This Step

Dest	Path	Cost D(v)
Α	А	0
В		
С		
D		
E		
F		

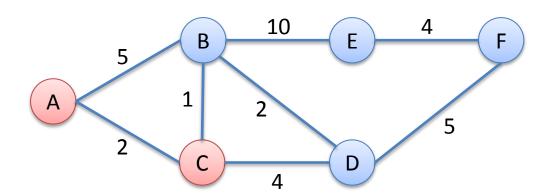

Can we find lower cost to any other node by going through C?

Previous Step

Dest	Path	Cost D(v)
Α	Α	0
В	В	5
С	С	2
D	?	∞
Е	?	∞
F	?	∞

This Step

Dest	Path	Cost D(v)
А	А	0
В		
С	С	2
D		
Е		
F		



Previous Step

Dest	Path	Cost D(v)
Α	А	0
В	В	5
С	С	2
D	?	∞
E	?	∞
F	?	∞

This Step

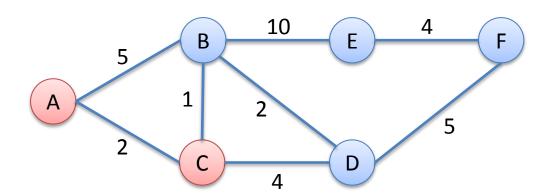
<i>*</i>	Dest	Path	Cost D(v)
	Α	Α	0
	В		
	С	С	2
	D		
	E		
	F		

Consider path to B:

$$D(B) = 5$$

or

$$D(C) + cost(C, B)$$


$$2 + 1 = 3$$

Previous Step

D	est	Path	Cost D(v)
	Α	Α	0
	В	В	5
	С	С	2
	D	?	∞
	Ε	?	∞
	F	?	∞

This Step

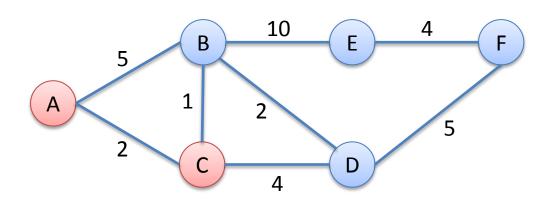
Dest	Path	Cost D(v)
Α	Α	0
В	С, В	3
С	С	2
D		
E		
F		

Consider path to D:

$$D(D) = \infty$$

or

$$D(C) + cost(C, D)$$

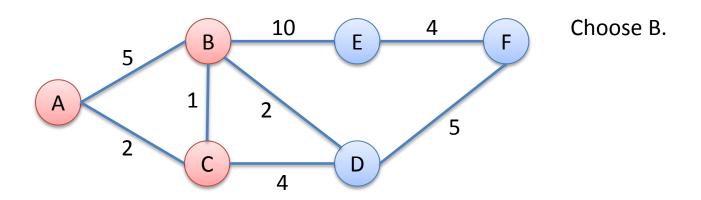

$$2 + 4 = 6$$

Previous Step

D	est	Path	Cost D(v)
	Α	Α	0
	В	В	5
	С	С	2
	D	?	∞
	Ε	?	∞
	F	?	∞

This Step

	Dest	Path	Cost D(v)
	А	Α	0
	В	С, В	3
\checkmark	С	С	2
	D	C, D	6
	Е		
	F		

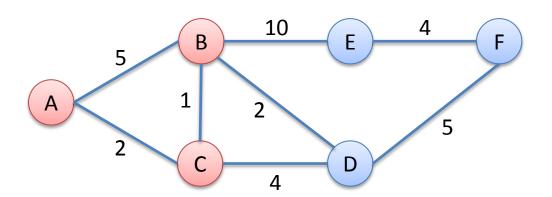

Still no information about E or F.

Previous Step

D	est	Path	Cost D(v)
	А	А	0
	В	В	5
	С	С	2
	D	?	∞
	Е	?	∞
	F	?	∞

This Step

Dest	Path	Cost D(v)
Α	Α	0
В	С, В	3
С	С	2
D	C, D	6
E	?	∞
F	?	∞


Previous Step

Dest	Path	Cost D(v)
Α	А	0
В	С, В	3
С	С	2
D	C, D	6
E	?	∞
F	?	∞

Pick Min

This Step

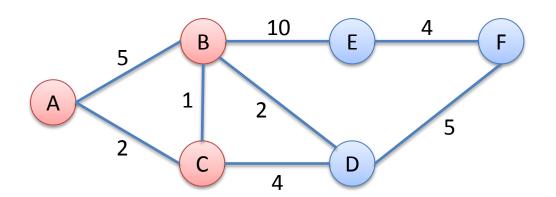
Dest	Path	Cost D(v)
А	Α	0
В	С, В	3
С	С	2
D		
Е		
F		

Consider path to D:

$$D(D) = 6$$

or

$$D(B) + cost(B, D)$$


$$3 + 2 = 5$$

Previous Step

Dest	Path	Cost D(v)
Α	Α	0
В	C, B	3
С	С	2
D	C, D	6
Ε	?	∞
F	?	∞

This Step

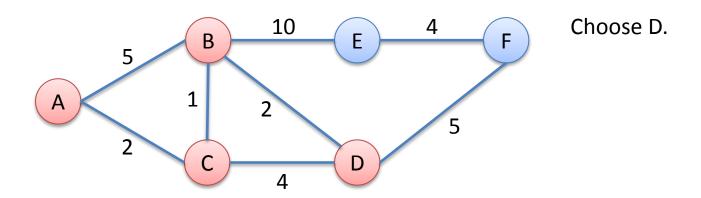
Dest	Path	Cost D(v)
А	Α	0
В	С, В	3
С	С	2
D	C, B, D	5
Е		
F		

Consider path to E:

$$D(E) = \infty$$

or

$$D(B) + cost(B, E)$$

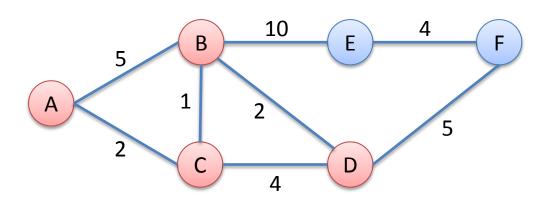

$$3 + 10 = 13$$

Previous Step

Dest	Path	Cost D(v)
Α	Α	0
В	С, В	3
С	С	2
D	C, D	6
E	?	∞
F	?	∞

This Step

Dest	Path	Cost D(v)
А	Α	0
В	С, В	3
С	С	2
D	C, B, D	5
Е	C, B, E	13
F	?	∞

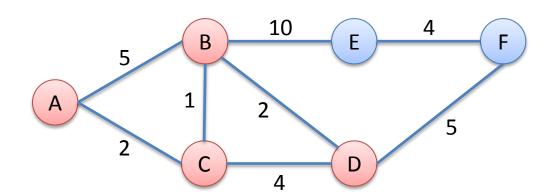


Previous Step

С	Pest	Path	Cost D(v)
/ ,	Α	Α	0
	В	С, В	3
	С	С	2
	D	C, B, D	5
	E	C, B, E	13
	F	?	∞

This Step

Dest	Path	Cost D(v)
А	Α	0
В	С, В	3
С	С	2
D	C, B, D	5
Е		
F		


No change for E.

Previous Step

Dest	Path	Cost D(v)
Α	А	0
В	С, В	3
С	С	2
D	C, B, D	5
E	C, B, E	13
F	?	∞

This Step

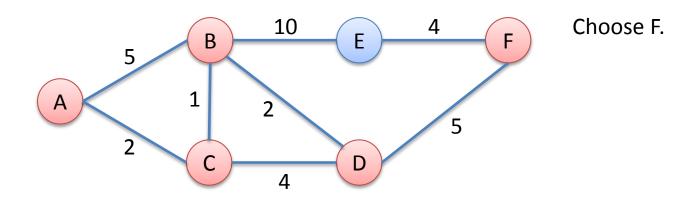
,
v)

Consider path to F:

$$D(F) = \infty$$

or

$$D(D) + cost(D, F)$$

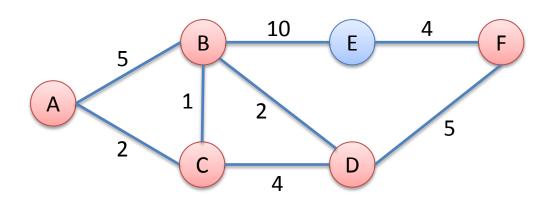

$$5 + 5 = 10$$

Previous Step

Dest	Path	Cost D(v)
А	Α	0
В	С, В	3
С	С	2
D	C, B, D	5
Е	C, B, E	13
F	?	∞

This Step

	Dest	Path	Cost D(v)
4	Α	Α	0
	В	С, В	3
4	С	С	2
	D	C, B, D	5
	E	C, B, E	13
	F	C, B, D, F	10



Previous Step

	Dest	Path	Cost D(v)
	А	А	0
\checkmark	В	С, В	3
	С	С	2
	D	C, B, D	5
	E	C, B, E	13
	F	C, B, D, F	10

This Step

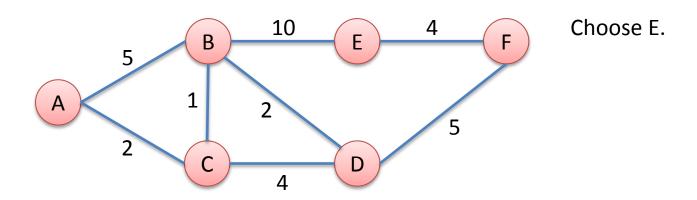
		•	
	Dest	Path	Cost D(v)
	А	А	0
	В	С, В	3
	С	С	2
\checkmark	D	C, B, D	5
	F	C, B, D, F	10

Consider path to E:

$$D(E) = 13$$

or

$$D(F) + cost(F, E)$$

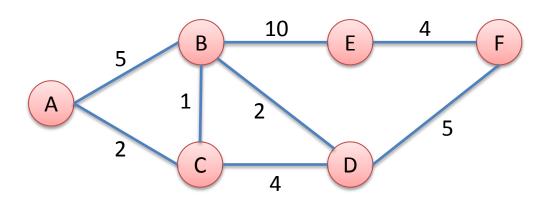

$$10 + 4 = 14$$

Previous Step

	Dest	Path	Cost D(v)
	Α	А	0
\checkmark	В	С, В	3
	С	С	2
	D	C, B, D	5
	E	C, B, E	13
	F	C, B, D, F	10

This Step

4	Dest	Path	Cost D(v)
	Α	Α	0
\checkmark	В	С, В	3
\checkmark	С	С	2
	D	C, B, D	5
	E	C, B, E	13
	F	C, B, D, F	10


Previous Step

	Dest	Path	Cost D(v)
	Α	Α	0
\checkmark	В	С, В	3
	С	С	2
	D	C, B, D	5
	Е	C, B, E	13
	F	C, B, D, F	10

This Step

	•	
Dest	Path	Cost D(v)
А	Α	0
В	С, В	3
С	С	2
D	C, B, D	5
E	C, B, E	13
F	C, B, D, F	10
	A B C D	A A B C, B C C D C, B, D E C, B, E

Dijkstra's Algorithm – Done!

Final Answer

	Dest	Path	Cost D(v)
	Α	А	0
\checkmark	В	С, В	3
	С	С	2
√,	D	C, B, D	5
V ,	E	C, B, E	13
	F	C, B, D, F	10

Populate Forwarding Table

Forwarding Table

Dest	Forward To
В	С
С	С
D	С
Е	С
F	С

Dijkstra's Algorithm – Complexity

With N nodes and E edges...

- As previously described it's O(N²)
 - At each step, there are N nodes to choose next
 - Total of N steps (each node must be chosen)

- Fastest known is O(N log N + E)
 - Uses a min-heap

Link State - Summary

- + Fast convergence (reacts to events quickly)
- * Small window of inconsistency

- Large number of messages sent on events
- Large routing tables as network size grows

Routing Algorithm Classes

Link State (Global)

- Routers maintain cost of each link in the network.
- Connectivity/cost changes flooded to all routers.
- Converges quickly (less inconsistency, looping, etc.).
- Limited network sizes.

Distance Vector (Decentralized)

- Routers maintain next hop & cost of each destination.
- Connectivity/cost changes iteratively propagate from neighbor to neighbor.
- Requires multiple rounds to converge.
- Scales to large networks.

Bellman-Ford Equation

```
let
  d_{v}(y) := cost of least-cost path from x to y
then
  d_{v}(y) = min_{v}\{c(x,v) + d_{v}(y)\}
                            cost from neighbor v to destination y
                    cost to neighbor v
            min taken over all neighbors v of x
```

Distance Vectors

Let D_x(y) = vector of least cost from x to y

Node x:

- Knows cost to each neighbor v: c(x,v)
- Maintains its neighbors' distance vectors.
 For each neighbor v, x maintains:

$$\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$$

- As opposed to link state:
 - Only keeps state for yourself and direct neighbors

Distance Vector Algorithm

- Periodically, each node sends its own distance vector to neighbors
- Upon receiving new DV from neighbor, update its local DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} \text{ for each node } y \in N$$

• Under typical conditions, $D_x(y)$ will converge to the least cost $d_x(y)$

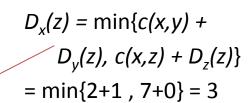
Distance Vector Algorithm

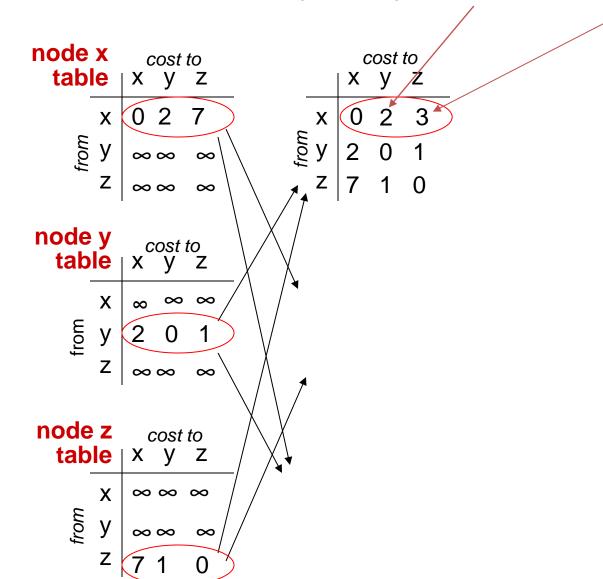
Iterative, asynchronous: Iteration when:

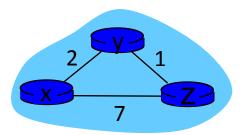
- Local link cost change
- DV update from neighbor
- Periodic timer

Distributed:

 Each node knows only a portion of global link info


each node:

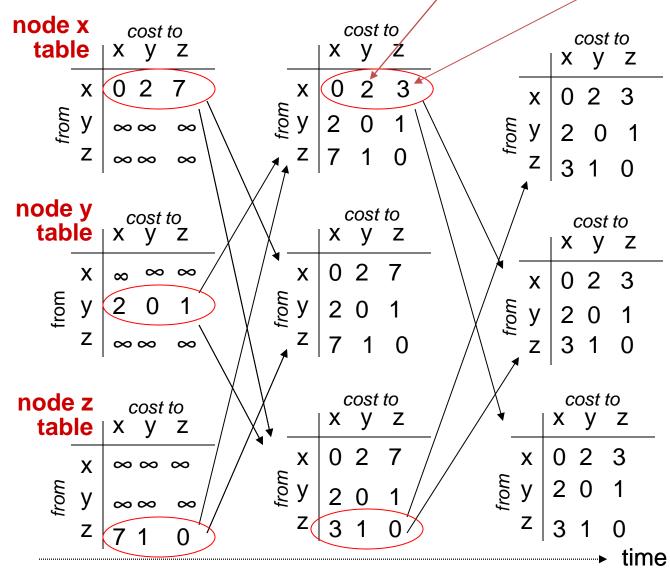

wait for (change in local link cost or msg from neighbor)

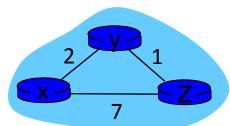

recompute estimates

if DV to any dest has changed,
notify neighbors

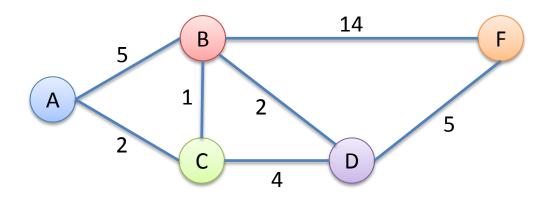
$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$



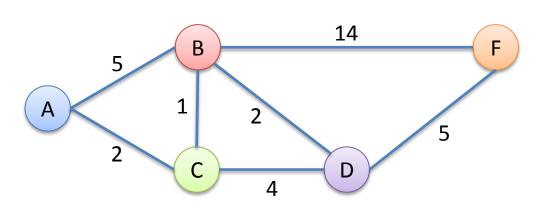


time


$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$



Distance Vector Example

- Same network as Dijkstra's example, without node E.
- What I'll show you next is routing table (of distance vectors) at each router.

Routers populate their forwarding table by taking the row minimum.

Noute	; I I	
Via→	В	
Го		

Router F

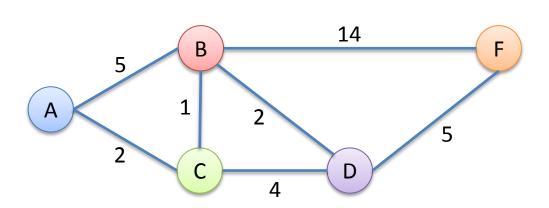
3 14

_

D 5

Router A

Via→ ↓ To	В	С
В	5	
С		2
D		
F		


Router B

Via→ ↓ To	A	С	D	F
А	5			
С		1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
А	2		
В		1	
D			4
F			

Via→ ↓ To	В	С	F
А			
В	2		
С		4	
F			5

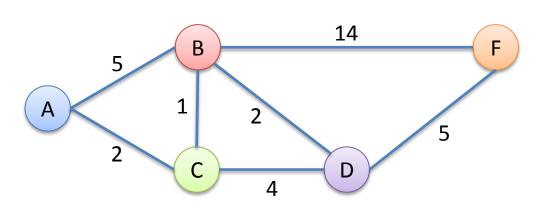
Router exchange their local vectors with direct neighbors. We'll assume they all exchange at once (synchronous). (Not realistic)

Router F

Via→ ↓ To	В	D
Α		
В	14	
С		
D		5

Router A

Via→ ↓ To	В	С
В	5	
С		2
D		
F		


Router B

Via→ ↓ To	A	С	D	F
Α	5			
С		1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
А	2		
В		1	
D			4
F			

Via→ ↓ To	В	С	F
А			
В	2		
С		4	
F			5

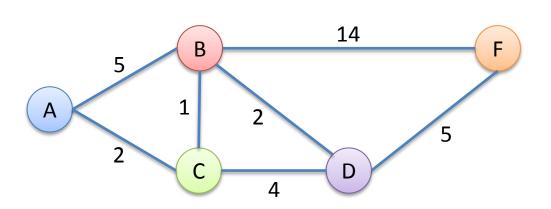
A will send to neighbors (B & C): I can get to B in 5 and C in 2.

D -	4 -	
KΩ	ute	rь

Via→ ↓ To	В	D
Α		
В	14	
С		
D		5

Router A

Via→ ↓ To	В	С
В	5	
С		2
D		
F		


Router B

Via→ ↓ To	A	С	D	F
Α	5			
С	7	1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
Α	2		
В	7	1	
D			4
F			

Via→	В	C	F
↓ To			
Α			
В	2		
С		4	
F			5

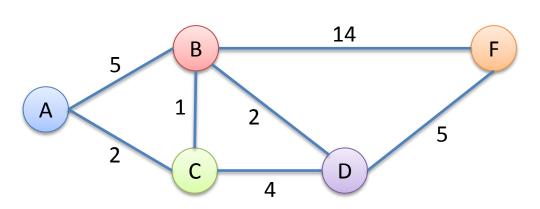
B will send to neighbors (A, C, D, F): I can get to A in 5, C in 1, D in 2, and F in 14.

Router F			
Via→ ↓ To	В	D	
А	19		
В	14		
С	15		
D	16	5	

Route	rA
Via→	В

D - . . + - . . ^

Via→ ↓ To	В	С
В	5	
С	6	2
D	7	
F	19	


Router B

Via→ ↓ To	A	С	D	F
А	5			
С	7	1		
D			2	
F				14

Router C

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	
D		3	4
F		15	

Via→ ↓ To	В	С	F
А	7		
В	2		
С	3	4	
F	16		5

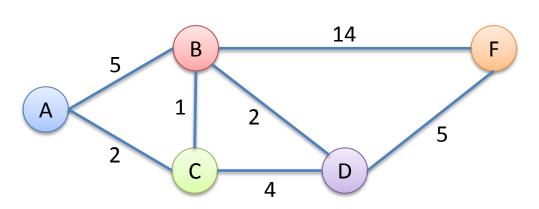
C will send to neighbors (A, B, D): I can get to A in 2, B in 1, and D in 4.

Router F			
Via→ ↓ To	В	D	
А	19		
В	14		
С	15		
D	16	5	

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6

19

Router A


Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1		
D		5	2	
F				14

Router R

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	
D		3	4
F		15	

Politor C

Modici D				
Via→ ↓ To	В	С	F	
А	7	6		
В	2	5		
С	3	4		
F	16		5	

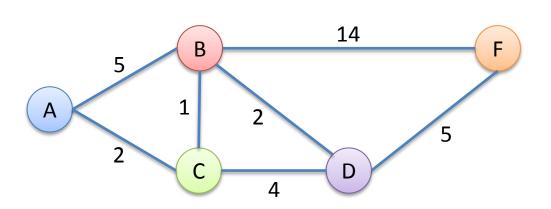
D will send to neighbors (B, C, F): I can get to B in 2, C in 4, and F in 5.

Router F			
Via→ ↓ To	В	D	
А	19		
В	14	7	
С	15	9	
_	4.6	_	

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6

19

Router A


Via→ ↓ To		C		F
Α	5	3		
С	7	1	6	
D		5	2	
F			7	14

Router R

Router C			
Via→ ↓ To	A	В	D
А	2	6	
В	7	1	6
D		3	4
F		15	9

Politor C

Modter D				
Via→ ↓ To	В	С	F	
Α	7	6		
В	2	5		
С	3	4		
F	16		5	

Router F

Via→ B D

↓ To

A 19

B 14 7

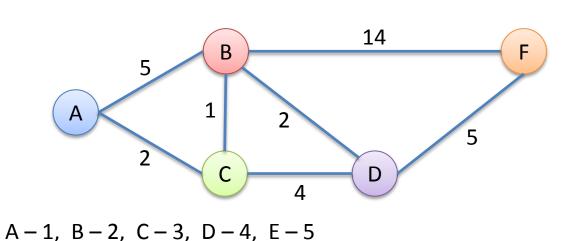
C 15 9

F will send to neighbors (B, D): I can get to B in 14, D in 5.

Roi	uter	Α
	<i>ACC</i> :	, ,

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	

Router B


Via→ ↓ To	A	С	D	F
Α	5	3		
С	7	1	6	
D		5	2	19
F			7	14

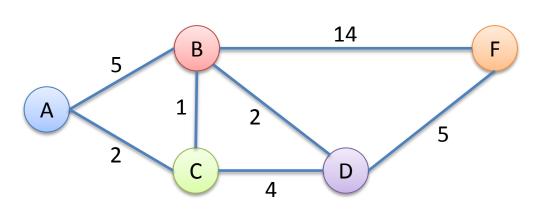
Router C

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	6
D		3	4
F		15	9

Via→ ↓ To	В	С	F
Α	7	6	
В	2	5	19
С	3	4	
F	16		5

At the end of round 1, how many routers need to update their forwarding tables?

Via→ ↓ To	В	D
Α	19	
В	14	7
С	15	9
D	16	5


Router F

Router A				
Via→ ↓ To	В	С		
В	5	3		
С	6	2		
D	7	6		
F	19			

Via→ ↓ To	A	С	D	F
Α	5	3		
С	7	1	6	
D		5	2	19
F			7	14

Politor B

Route	Router C			Router D				
Via→ ↓ To	A	В	D		Via→ ↓ To	В	С	F
А	2	6			Α	7	6	
В	7	1	6		В	2	5	19
D		3	4		С	3	4	
F		15	9		F	16		5

 Via→
 B
 D

 ↓ To
 B
 D

 A
 19
 B

 B
 14
 7

 C
 15
 9

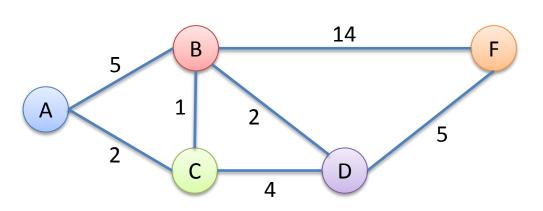
 D
 16
 5

Router F

Each router advertises the best cost it has to each destination. Nothing new to learn from A or F, so we'll skip their announcements.

D	_		+~	~	Λ
K	()	u	ıe	1	Α

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	19	


Router B

Via→ ↓ To	A	С	D	F
Α	5	3		
С	7	1	6	
D		5	2	19
F			7	14

Router C

Via→ ↓ To	A	В	D
Α	2	6	
В	7	1	6
D		3	4
F		15	9

Via→ ↓ To	В	С	F
Α	7	6	
В	2	5	19
С	3	4	
F	16		5

B will send to neighbors (A, C, D, F): I can get to A in 3, C in 1, D in 2, and F in 7.

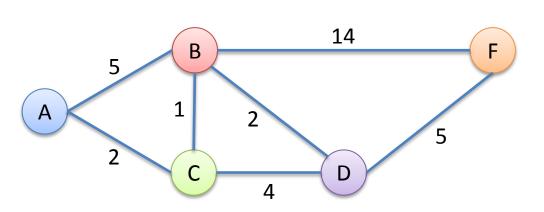
Model		
Via→	В	
↓ To		

Router F

↓ To		
А	17	
В	14	7
С	15	9
Б.	4.0	_

Router A	R	0	u	te	r	Α
----------	---	---	---	----	---	---

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	12	

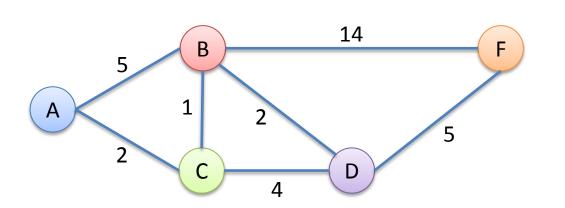

Router B

Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1	6	
D		5	2	19
F			7	14

Router C

Via→ ↓ To	A	В	D
Α	2	4?	
В	7	1	6
D		3	4
F		8	9

Via→ ↓ To	В	С	F
Α	5	6	
В	2	5	19
С	3	4	
F	9?		5

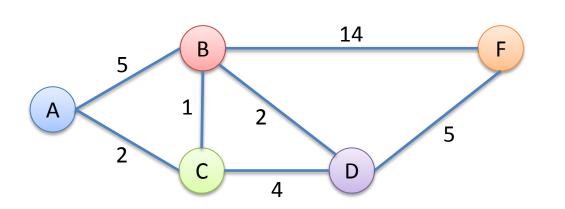


C will send to neighbors (A, B, D):

I can get to A in 2, B in 1, D in 3, and F in 9.

Router F										
Via→ ↓ To	В	D								
А	17									
В	14	7								
С	15	9								
D	16	5								

Route	r A		Router B				Route	Router C R				outer D			
Via→ ↓ To	В	С	Via→ ↓ To	A	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	А	5	3			А	2	4?		А	5	6	
С	6	2	С	7	1	6		В	7	1	6	В	2	5	19
D	7	5	D		4?	2	19	D		3	4	С	3	4	
F	12	11	F		10	7	14	F		8	9	F	9?	13?	5

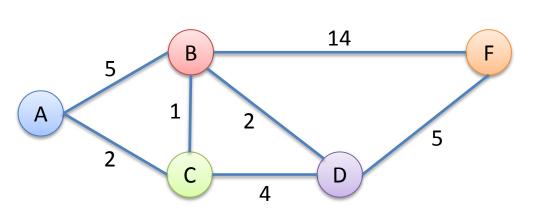


This process repeats for a while...

Route	er F	
Via→ ↓ To	В	D
Α	17	
В	14	7
С	15	9
D	16	5

Route	r A		Router B					Router C				Router D			
Via→ ↓ To	В	С	Via→ ↓ To	A	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	Α	5	3			Α	2	4?		Α	5	6	
С	6	2	С	7	1	6		В	7	1	6	В	2	5	19
D	7	5	D		4?	2	19	D		3	4	С	3	4	
F	12	11	F		10	7	14	F		8	9	F	9?	13?	5

Distance Vector – Convergence

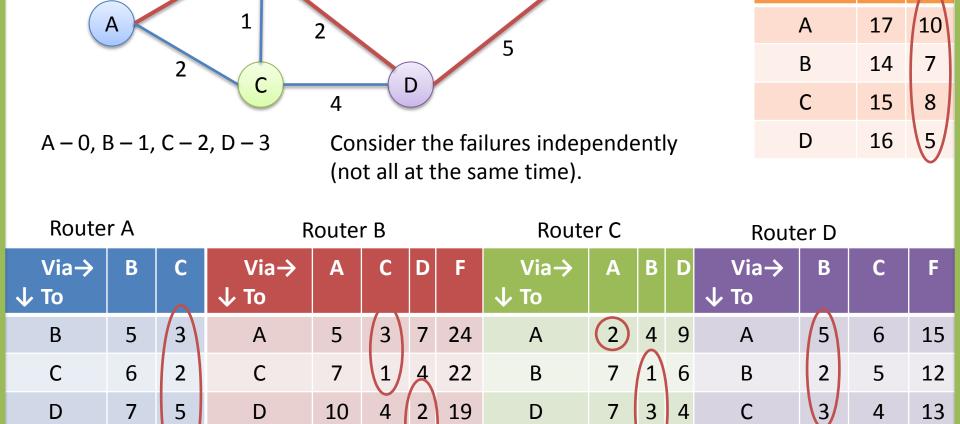

Eventually, we reach a converged state.

Via→ ↓ To	В	D
А	17	10
В	14	7
С	15	8
D	16	5

Router F

Route	r A		Router B					Route	Router C Router D						
Via→ ↓ To	В	С	Via→ ↓ To	A	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	А	5	3	7	24	А	2	4	9	А	5	6	15
С	6	2	С	7	1	4	22	В	7	1	6	В	2	5	12
D	7	5	D	10	4	2	19	D	7	3	4	С	3	4	13
F	12	10	F	15	9	7	14	F	12	8	9	F	9	12	5

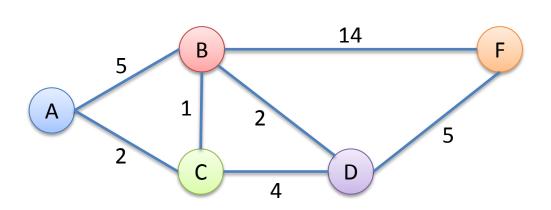
Distance Vector – Convergence


Final forwarding tables:

Router F							
Via→ ↓ To	В	D					
А	17	10					
В	14	7					
С	15	8					
D	16	5					

Route	r A		Router B Router C					Route	er D						
Via→ ↓ To	В	C	Via→ ↓ To	A	С	D	F	Via→ ↓ To	A	В	D	Via→ ↓ To	В	С	F
В	5	3	Α	5	3	7	24	А	2	4	9	А	5	6	15
С	6	2	С	7	1	4	22	В	7	1	6	В	2	5	12
D	7	5	D	10	4	2	19	D	7	3	4	С	3	4	13
F	12	10	F	15	9	7	14	F	12	8	9	F	9	12	5

Of the links in red below, for how many would a failure cause a loop?


В

Via→

↓ To

Rewind: Distance Vector – Round 2

B will send to neighbors (A, C, D, F): I can get to A in 3, C in 1, D in 2, and F in 7.

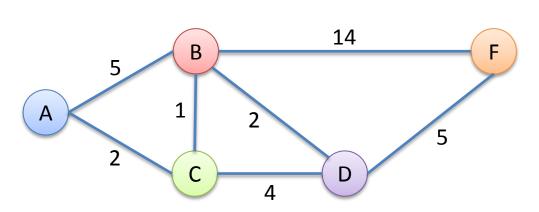
Router	F
	•

Via→ ↓ To	В	D
Α	17	
В	14	7
С	15	9
D	16	5

R	O	u	t	e	r	Α	١
•	\cdot	v	•	_	•	•	•

Via→	В	С
↓ To		
В	5	3
С	6	2
D	7	6
F	12	

Router B


Via→ ↓ To	A	С	D	F
Α	5	3		
С	7	1	6	
D		5	2	19
F			7	14

Router C

Via→ ↓ To	A	В	D
Α	2	4?	
В	7	1	6
D		3	4
F		8	9

Nouter D							
В	С	F					
5	6						
2	5	19					
3	4						
9?		5					
	5 2 3	B C5 62 53 4					

Rewind: Distance Vector – Round 2

Poisoned reverse: Don't advertise a lower value to a neighbor if you go through that neighbor to get there!

_	_		_	_		Λ.
К	റ	ı	Т	Д	r	Α
١.	v	u	ı.	•		$\overline{}$

Via→ ↓ To	В	С
В	5	3
С	6	2
D	7	6
F	12	

Router B

Via→ ↓ To	A	С	D	F
А	5	3		
С	7	1	6	
D		5	2	19
F			7	14

Router C

No!

 ∞

Via→ ↓ To	A	В	D
А	2	4?	
В	7	1	6
D		3	4
F		8	9

Router F

4	Via→ To	В	D
	Α	17	
	В	14	7
	С	15	9
	D	16	5

Modici B					
Via→ ↓ To	В	С	F		
Α	5	6			
В	2	5	19		
С	3	4			
F	9?		5		

Loop-prevention

 Route poisoning helps prevent loops, but doesn't guarantee loop free.

Other mechanisms help too

There will always be a window of vulnerability

Summary

Link State

- Fast convergence (reacts to events quickly)
- Small window of inconsistency

- Large number of messages sent on events
- Large routing tables as network size grows

Distance Vector

- Distributed (small tables)
- No flooding (fewer messages)

- Slower convergence
- Larger window of inconsistency

Real Protocols

Link State

- Open Shortest Path First (OSPF)
- Intermediate system to intermediate system (IS-IS)

Distance Vector

- Routing Information Protocol (RIP)
- Interior Gateway Routing Protocol (IGRP – Cisco)
- Border Gateway Protocol (BGP) (sort of)