
CS43: Computer Networks
The Transport Layer & UDP

Kevin Webb

Swarthmore College

October 3, 2017

1

Transport Layer

• Moving “down” a layer.

• Current perspective:

– Application is the boss…

– Usually executing within the OS kernel.

– The network layer is ours to command!

Network Layer (Context)

• What it does: finds paths through network
– Routing from one end host to another

• What it doesn’t:
– Reliable transfer: “best effort delivery”
– Guarantee paths
– Arbitrate transfer rates

• For now, think of the network layer as giving us
an “API” with one function: sendtohost(data,
host). Promise: the data will go there. Usually.

Transport services and protocols

• Provides logical communication
between processes.

• Runs in end systems.

• Sender: breaks application
messages into segments,
passes to network layer

• Receiver: reassembles
segments into messages,
passes to app layer

• Exports services to
application that network
layer does not provide

application
transport
network
data link
physical

application
transport
network
data link
physical

How many of these services might we
provide at the transport layer? Which?

• Reliable transfers

• Error detection

• Error correction

• Bandwidth
guarantees

• Latency guarantees

• Encryption

• Message ordering

• Link sharing fairness

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

How many of these services might we
provide at the transport layer? Which?

• Reliable transfers (T)

• Error detection (U, T)

• Error correction (T)

• Bandwidth
guarantees

• Latency guarantees

• Encryption

• Message ordering (T)

• Link sharing fairness
(T)

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Critical question: Can it be done at the end host?

TCP sounds great! UDP…meh. Why
do we need it?

A. It has good performance characteristics.

B. Sometimes all we need is error detection.

C. We still need to distinguish between sockets.

D. It basically just fills a gap in our layering model.

Adding Features

• Nothing comes for free

• Data given by application

• Apply header

– Keeps transport state

– Attached by sender

– Decoded by receiver

Payload Data

Payload Data
TCP/
UDP

(TCP) Overhead

• Establishing state (making a connection)

– Recall HTTP 1.0 vs. HTTP 1.1

– Extra communication round trip

• Delays due to loss / reordering.

• Playing fair might cost you!

App

TCP

IP

Ethernet
interface

App

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Recall: Addressing Sockets

• IP address identifies device interface

• Need another identifier: port
– 16-bit, unsigned integer value

– Differentiates sockets

Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

(Simultaneous transmission of two or more signals/messages over a single channel.)

Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Senders mark segments, in header, with identifier (port)

(Simultaneous transmission of two or more signals/messages over a single channel.)

Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Senders mark segments, in header, with identifier (port)

(Simultaneous transmission of two or more signals/messages over a single channel.)

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

?

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

?

UDP: User Datagram Protocol [RFC 768]

• “No frills,” “Bare bones” Internet transport protocol
– RFC 768 (1980)

– Length of the document?

• “Best effort” service, UDP segments may be:

– Lost

– Delivered out of order

– (Same as underlying network layer)

• Connectionless:

– No initial state transferred between parties (no handshake)

– Each UDP segment is handled independently

UDP Segment

Application Data
(Payload)

Source Port Dest Port

Length Checksum

32 bits

TCP Segment

source port # dest port #

32 bits

application

data

(variable length)

Urg data pointer

FSRPAU
head

len

not

used

checksum

receive window

sequence number

acknowledgement number

options (variable length)

UDP Segment

Application Data
(Payload)

Source Port Dest Port

Length
(incl header)

Checksum

32 bits

UDP Checksum

• Goal: Detect transmission errors (e.g. flipped bits)
– Router memory errors

– Driver bugs

– Electromagnetic interference

• RFC: “Checksum is the 16-bit one's complement of
the one's complement sum of a pseudo header of
information from the IP header, the UDP header,
and the data, padded with zero octets at the end (if
necessary) to make a multiple of two octets.”

UDP Checksum

• Goal: Detect transmission errors (e.g. flipped bits)

– Router memory errors

– Driver bugs

– Electromagnetic interference

• At the sender:

– Treat the entire segment as 16-bit integer values

– Add them all together (sum)

– Put the 1’s complement in the checksum header field

Recall CS31

• In bitwise compliment, all of the bits in a binary
number are flipped.

• So 1111000011110000 -> 0000111100001111

Checksum Example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

sum

checksum

wraparound

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

1

Receiver

• Add all the received data together as 16-bit integers

• Add that to the checksum

• If result is not 1111 1111 1111 1111, there are errors!

If our checksum addition yields all ones,
are we guaranteed to be error-free?

A. Yes

B. No

UDP Applications

• Latency sensitive

– Quick request/response (DNS)

– Network management (SNMP, TFTP)

– Voice/video chat

• Error correction unnecessary (periodic msgs)

• Communicating with lots of others

A. Sorry, you’re out of luck.

B. Write your own transport protocol.

C. Add in the features you want at the
application layer.

What if you want something more
reliable than UDP, but faster/not as full
featured as TCP?

TCP: send() Blocking

• Recall: With TCP, send() blocks if buffer full.

UDP: sendto() Blocking?

• Recall: With TCP, send() blocks if buffer full.

• Does UDP need to block? Should it?

A. Yes, if buffers are full, it should.

B. It doesn’t need to, but it might be useful.

C. No, it does not need to and shouldn’t do so.

Summary

• UDP: No frills transport protocol.

• Simple, 8-byte header with ports, len, cksum

• Checksum protects against most bit flips

