
CSE 43: Computer Networks
Structure, Threading, and Blocking

Kevin Webb

Swarthmore College

September 14, 2017

1

Agenda

• Under-the-hood look at system calls

– Data buffering and blocking

• Processes, threads, and concurrency models

• Event-based, non-blocking I/O

Recall Interprocess Communication

• Processes must communicate to cooperate

• Must have two mechanisms:
– Data transfer

– Synchronization

• On a single machine:
– Threads (shared memory)

– Message passing

Message Passing (local)

• Operating system mechanism for IPC
– send (destination, message_buffer)

– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers

• Synchronization: ?

send (to, buf) receive (from, buf)

kernel
P1 P2

Process
memory

Where is the synchronization in
message passing IPC?

A. The OS adds synchronization.

B. Synchronization is determined by the order of
sends and receives.

C. The communicating processes exchange
synchronization messages (lock/unlock).

D. There is no synchronization mechanism.

Interprocess Communication
(non-local)

• Processes must communicate to cooperate

• Must have two mechanisms:
– Data transfer

– Synchronization

• Across a network:
– Threads (shared memory) NOT AN OPTION!

– Message passing

Message Passing (network)

• Same synchronization
• Data transfer

– Copy to/from OS socket buffer
– Extra step across network: hidden from applications

send (to, buf) receive (from, buf)

P1 P2

kernel kernel

TCP/IP TCP/IP

Socket Buffer

Descriptor Table

• OS stores a table, per
process, of descriptors

Process

Kernel

Descriptors

Where do descriptors come from?

What are they?

Descriptor Table

• OS stores a table, per
process, of descriptors

Process

Kernel

0

1

2

stdin stdout stderr

…

socket()

• socket() returns a
socket descriptor

• Indexes into table

Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

7

socket()

• OS stores details of the
socket, connection,
and pointers to buffers

Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

socket()
Process

Kernel

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

• OS stores details of the
socket, connection,
and pointers to buffers

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Buffer: Temporary
data storage
location

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Internet

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

recv(): Move data
from socket buffer
to process

Internet

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

send(): Move
data from process
to socket buffer

Internet

Socket Buffers
Process

Operating System

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Challenge: Your process
does NOT know what is
stored here!

Free space? Is data here?

recv()
Process

Kernel

0

1

2

7

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: …, Local port: …
Send buffer , Receive buffer

r_buf (size 200)

Is data here?

What should we do if the receive socket
buffer is empty? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Socket buffer (receive)

Empty

100 bytes

Two Scenarios:

r_buf (size 200)

What should we do if the receive socket
buffer is empty? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Empty 100 Bytes

A Block Block

B Block Copy 100 bytes

C Copy 0 bytes Block

D Copy 0 bytes Copy 100 bytes

E Something else

Socket buffer (receive)

Empty

Two Scenarios:

r_buf (size 200)

100 bytes

What should we do if the send socket
buffer is full? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, s_buf, 200, 0);

Socket buffer (send)

Full

Two Scenarios:

s_buf (size 200)

100 bytes

What should we do if the send socket
buffer is full? If it has 100 bytes?

Process

Kernel

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, s_buf, 200, 0);

Full 100 Bytes

A Return 0 Copy 100 bytes

B Block Copy 100 bytes

C Return 0 Block

D Block Block

E Something else

Socket buffer (send)

Full

Two Scenarios:

s_buf (size 200)

100 bytes

Blocking Implications

• DO NOT assume that you will recv() all of the
bytes that you ask for.

• DO NOT assume that you are done receiving.
• ALWAYS receive in a loop!*

• DO NOT assume that you will send() all of the
data you ask the kernel to copy.

• Keep track of where you are in the data you want
to send.

• ALWAYS send in a loop!*

* Unless you’re dealing with a single byte, which is rare.

ALWAYS check send() return value!

• When send() return value is less than the data
size, you are responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

ALWAYS check send() return value!

• When send() return value is less than the data
size, you are responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

60

Data sent: 60
Data to send: 130

Data:

ALWAYS check send() return value!

• When send() return value is less than the data
size, you are responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

Data sent: 60
Data to send: 130

// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0);

Data:

60

ALWAYS check send() return value!

• When send() return value is less than the data
size, you are responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

Data sent: 60
Data to send: 130

// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0);

Data:

?

Repeat until all bytes are sent. (data_sent == data_to_send)…

60

Blocking Summary

send()

• Blocks when socket buffer
for sending is full

• Returns less than requested
size when buffer cannot
hold full size

recv()

• Blocks when socket buffer
for receiving is empty

• Returns less than requested
size when buffer has less
than full size

Always check the return value!

Concurrency

• Think you’re the only one talking to that server?

Server

Without Concurrency

• Think you’re the only one talking to that server?

Web Server recv() request

Without Concurrency

• Think you’re the only one talking to that server?

Web Server recv() request

Client taking its time…

Server Process
Blocked!

Ready to send, but server still
blocked on first client.

If only we could handle these
connections separately…

Multiple Processes

Web Server
Server fork()s

Child process recv()s
Web

Server
Web

Server
Services the new
client request

Server fork()s

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process

• Inherits descriptor table

• Does not share memory
– New memory address space

• Scheduled independently
– Separate execution context

– Can block independently

Spawned Thread

• Shares descriptor table

• Shares memory
– Uses parent’s address space

• Scheduled independently
– Separate execution context

– Can block independently

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process

• Inherits descriptor table

• Does not share memory
– New memory address space

• Scheduled independently
– Separate execution context

– Can block independently

Spawned Thread

• Shares descriptor table

• Shares memory
– Uses parent’s address space

• Scheduled independently
– Separate execution context

– Can block independently

Often, we don’t need the extra isolation of a separate address space.
Faster to skip creating it and share with parent – threading.

Threads & Sharing

• Global variables and static objects are shared

– Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared

– Allocated from heap with malloc/free or new/delete

• Local variables are not shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on
another thread’s stack

Whether processes or threads…

• Several benefits

– Modularizes code:

• one piece accepts connections, another services them

– Each can be scheduled on a separate CPU

– Blocking I/O can be overlapped

Which benefit is the most critical?

A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.

Whether processes or threads…

• Several benefits
– Modularizes code:

• one piece accepts connections, another services them

– Each can be scheduled on a separate CPU

– Blocking I/O can be overlapped

• Still not maximum efficiency…
– Creating/destroying threads still takes time

– Requires memory to store thread execution state

– Lots of context switching overhead

Non-blocking I/O

• One operation: add a flag to send/recv

• Permanently, for socket: fcntl() – “file control”
– Allows setting options on file/socket descriptors

int sock, result, flags = 0;

sock = socket(AF_INET, SOCK_STREAM, 0);

result = fcntl(sock, F_SETFL, flags|O_NONBLOCK)

check result – 0 on success

Non-blocking I/O

• With O_NONBLOCK set on a socket

– No operations will block!

• On recv(), if socket buffer is empty:

– returns -1, errno is EAGAIN or EWOULDBLOCK

• On send(), if socket buffer is full:

– returns -1, errno is EAGAIN or EWOULDBLOCK

How about…

server_socket = socket(), bind(), listen()
connections = []

while (1)
new_connection = accept(server_socket)
if new_connection != -1, add it to connections
for connection in connections:

recv(connection, …) // Try to receive
send(connection, …) // Try to send, if needed

}

Will this work?

server_socket = socket(), bind(), listen()
connections = []

while (1)
new_connection = accept(server_socket)
if new_connection != -1, add it to connections
for connection in connections:

recv(connection, …) // Try to receive
send(connection, …) // Try to send, if needed

}
A. Yes, this will work.

B. No, this will execute too slowly.

C. No, this will use too many
resources.

D. No, this will still block.

Event-based Concurrency

• Rather than checking over and over, let the OS
tell us when data can be read/written

• Create set of FDs we want to read and write

• Tell system to block until at least one of those
is ready for us to use. The OS worry about
selecting which one.

select()

select()

int main(void) {

fd_set rfds;

struct timeval tv;

int retval;

/* Watch stdin (fd 0) to see when it has input. */

FD_ZERO(&rfds);

FD_SET(0, &rfds);

/* Wait up to five seconds. */

tv.tv_sec = 5;

tv.tv_usec = 0;

retval = select(1, &rfds, NULL, NULL, &tv);

/* Don't rely on the value of tv now! */

if (retval == -1)

perror("select()");

else if (retval)

printf("Data is available now.\n");

/* FD_ISSET(0, &rfds) will be true. */

else

printf("No data within five seconds.\n");

}

• More interesting example
in the select_tut man page.

• Beej’s guide also has a
good example.

• You’ll use it in a future lab!

Event-based Concurrency

• Rather than checking over and over, let the OS
tell us when data can be read/written

• Tell system to block until at least one of those is
ready for us to use. The OS worry about selecting
which one.

• Only one process/thread (or one per core)
– No time wasted on context switching
– No memory overhead for many processes/threads

