
CS 43: Computer Networks
HTTP

Kevin Webb

Swarthmore College

September 12, 2017

1

What IS A Web Browser?

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

HTTP Overview

2. Browser establishes connection with server.
Looks up “some.host.name.tld”
Calls connect()

HTTP Overview

3. Browser requests the corresponding data.
GET /directory/name/file.ext HTTP/1.0
Host: some.host.name.tld
[other optional fields, for example:]
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)
Accept-language: en

HTTP Overview

4. Server responds with the requested data.
HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
[Blank line]
(Data data data data…)

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

HTTP Overview

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches other
objects, and closes the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

HTTP Overview (Lab 1)

1. User types in a URL.

2. Browser establishes connection with server.

3. Browser requests the corresponding data.

4. Server responds with the requested data.

5. Browser renders the response, fetches other
objects, and closes the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at example server.
Anything typed is sent to server on port 80
at demo.cs.swarthmore.edu

telnet demo.cs.swarthmore.edu 80

2. Type in a GET HTTP request:

GET / HTTP/1.1

Host: demo.cs.swarthmore.edu

(blank line)

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to the HTTP server.

3. Look at response message sent by HTTP server!

Example

Example

Response
headers

Response
body

(This is what you should be
saving in lab 1.)

HTTP request message

• two types of HTTP messages: request, response

• HTTP request message:

– ASCII (human-readable format)

request line
(GET, POST,
HEAD, etc. commands)

header
lines

carriage return,
line feed

GET /index.html HTTP/1.1\r\n

Host: web.cs.swarthmore.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

Why do we have these \r\n (CRLF) things
all over the place?

A. They’re generated when the user hits ‘enter’.

B. They signal the end of a field or section.

C. They’re important for some other reason.

D. They’re an unnecessary protocol artifact.

GET /index.html HTTP/1.1\r\n

Host: web.cs.swarthmore.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

How else might we delineate messages?

A. There’s not much else we can do.

B. Force all messages to be the same size.

C. Send the message size prior to the message.

D. Some other way (discuss).

HTTP is all text…

• Makes the protocol simple
– Easy to delineate message (\r\n)
– (Relatively) human-readable
– No worries about encoding or formatting data
– Variable length data

• Not the most efficient
– Many protocols use binary fields

• Sending “12345678” as a string is 8 bytes
• As an integer, 12345678 needs only 4 bytes

– The headers may come in any order
– Requires string parsing / processing

Example

Wireshark

Request Method Types (“verbs”)

HTTP/1.0 (1996):

• GET

– Requests page.

• POST

– Uploads user response

to a form.

• HEAD

– asks server to leave

requested object out

of response

HTTP/1.1 (1997 & 1999):

• GET, POST, HEAD

• PUT

– uploads file in entity

body to path specified

in URL field

• DELETE

– deletes file specified in

the URL field

• TRACE, OPTIONS,

CONNECT, PATCH

HTTP/1.0 (1996):

• GET

– Requests page.

• POST

– Uploads user response

to a form.

• HEAD

– asks server to leave

requested object out

of response

HTTP/1.1 (1997 & 1999):

• GET, POST, HEAD

• PUT

– uploads file in entity

body to path specified

in URL field

• DELETE

– deletes file specified in

the URL field

• TRACE, OPTIONS,

CONNECT, PATCH

• (+) Persistent connections

Request Method Types (“verbs”)

HTTP/1.0 (1996):

• GET

– Requests page.

• POST

– Uploads user response

to a form.

• HEAD

– asks server to leave

requested object out

of response

HTTP/1.1 (1997 & 1999):

• GET, POST, HEAD

• PUT

– uploads file in entity

body to path specified

in URL field

• DELETE

– deletes file specified in

the URL field

• TRACE, OPTIONS,

CONNECT, PATCH

• (+) Persistent connections

Request Method Types (“verbs”)

Uploading form input

GET (in-URL) method:

• uses GET method

• input is uploaded in URL field of request line:

POST method:

• web page often includes form input

• input is uploaded to server in request entity body

www.somesite.com/animalsearch?monkeys&banana

GET vs. POST

• GET can be used for idempotent requests

– Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

GET vs. POST

• GET can be used for idempotent requests

– Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

I. Incrementing a variable
II. Assigning a value to a variable

III. Allocating memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

How many of the following operations are idempotent?

GET vs. POST

• GET can be used for idempotent requests.
– Idempotence: an operation can be applied multiple times

without changing the result (the final state is the same)

• POST should be when…
– A request changes the state of the server or DB

– Sending a request twice would be harmful
• (Some) browsers warn about sending multiple post requests

– Users are inputting non-ascii characters

– Input may be very large

– You want to hide how the form works/user input

When might you use GET vs. POST?

GET POST

A. Forum post Search terms, Pizza order

B. Search terms, Pizza order Forum post

C. Search terms Forum post, Pizza order

D. Forum post, Search terms, Pizza Order

E. Forum post, Search terms, Pizza Order

HTTP response message

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

HTTP response status codes

200 OK

– Request succeeded, requested object later in this msg

301 Moved Permanently

– Requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

– Request msg not understood by server

403 Forbidden

– You don’t have permission to read the object

404 Not Found

– Requested document not found on this server

505 HTTP Version Not Supported

• Status code appears in first line of server-to-client
response message.

• Some common response codes:

HTTP response status codes

420 Enhance Your Calm (twitter)

– Slow down, you’re being rate limited

451 Unavailable for Legal Reasons

– Censorship?

418 I’m a Teapot

– Response from a teapot requested to brew a beverage
(announced Apr 1)

• Status code appears in first line of server-to-client
response message.

• Many others too. Search “list of HTTP status codes”

State(less)

(XKCD #869, “Server Attention Span”)

State(less)

• Original web: simple document retrieval

• Server is not required to keep state between
connections (often it might want to though)

• Client is not required to identify itself
(server might refuse to talk otherwise though)

User-server state: cookies

Many web sites use cookies

Four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

Example:

• Susan always accesses the

Internet from her PC

• She visits specific e-commerce

site for the first time

• When initial HTTP requests

arrives at site, site creates:

– unique ID

– entry in backend database

for ID

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response
set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

Cookies (continued)

What cookies can be used for:
• authorization
• shopping carts
• recommendations
• user session state (Web e-mail)

How to keep “state”:
• protocol endpoints: maintain state at sender/receiver over

multiple transactions
• cookies: http messages carry state

Cookies: Teaching the Controversy

• Cookies permit sites to learn a lot about you

• You may supply name and e-mail to sites (and more!)

• 3rd party cookies (from ad networks, etc) can follow
you across multiple sites.
– Ever visit a website, and the next day ALL your ads are

from them?

• You COULD turn them off
– But good luck doing anything on the internet!

HTTP Performance

HTTP connections

non-persistent HTTP

• at most one object sent

over TCP connection

– connection then

closed

• downloading multiple

objects requires

multiple connections

persistent HTTP

• multiple objects can

be sent over single

TCP connection

between client, server

object: image, script, stylesheet, etc.

Pseudocode Example

non-persistent HTTP

for object on web page:

connect to server

request object

receive object

close connection

persistent HTTP

connect to server

for object on web page:

request object

receive object

close connection

Round Trip Time

Round Trip Time (RTT): time

for a small packet to travel

from client to server and

response to come back

Connection establishment (via

TCP) requires one RTT.

RTT

time time

Non-Persistent HTTP Connections
can download a website with several
objects in…

A. One RTT + (File transfer time per object)

B. (One RTT + File transfer time) per object

C. Two RTTs

D. Two RTTs + (File transfer time per object)

E. (Two RTTS + File transfer time) per object

RTT

time time

Non-persistent HTTP: response time

Round Trip Time (RTT): time for a
small packet to travel from
client to server and back

HTTP response time:

• one RTT to initiate TCP
connection

• one RTT for HTTP request
and first few bytes of HTTP
response to return

• file transmission time

• non-persistent HTTP response
time =

2RTT+ file
transmission time

For each object

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

file
received

Persistent Connection

time to
transmit
file

RTT

request
file

RTT

time time

Persistent HTTP

Non-persistent HTTP issues:

• requires 2 RTTs per object

• OS overhead for each TCP

connection

• browsers often open

parallel TCP connections

to fetch referenced objects

Persistent HTTP:

• server leaves connection

open after sending response

• subsequent HTTP messages

between same client/server

sent over open connection

• client sends requests as

soon as it encounters a

referenced object

• as little as one RTT for all

the referenced objects

