
CS 31: Intro to Systems 
Networked Hangman 

Kevin Webb 

Swarthmore College 

May 28, 2016 



Agenda 

• Brief overview of network abstractions 

 

• An example protocol: hangman game 

 

• Try writing our own network code (Python) 



Message Passing (local) 

• Operating system mechanism for IPC 
– send (destination, message_buffer) 

– receive (source, message_buffer) 

• Data transfer: in to and out of kernel message buffers 

 
 

send (to, buf) 

 
 

receive (from, buf) 

kernel 

 
 

P1 P2 
 
 

Process 
memory 



Message Passing (local) 

• Operating system mechanism for IPC 
– send (destination, message_buffer) 

– receive (source, message_buffer) 

• Data transfer: in to and out of kernel message buffers 

 
 

send (to, buf) 

 
 

receive (from, buf) 

kernel 

 
 

P1 P2 
 
 

Need abstraction to represent 
who we’re communicating with. 



Sockets 

• Socket: abstraction of communication endpoint 

– Provided by OS 

– Simple interface: send() / recv() 

Process A Process B 

Socket: 

OS 

Reliability, Data ordering, Encryption, Formatting, Fairness 

Network 
Routing, Forwarding, Signaling 



Sockets 

• Socket: abstraction of communication endpoint 

– Provided by OS 

– Simple interface: send() / recv() 

Process A Process B 

Socket: 

Here be dragons! 

OS 



Message Passing (network) 

• Same synchronization 
• Data transfer 

– Copy to/from OS socket buffer 
– Extra step across network: hidden from applications 

 
 

send (to, buf) 

 
 

receive (from, buf) 

P1 P2 

kernel 

 
 

 
 

kernel 

 
 

 
 

TCP/IP TCP/IP 

Socket Buffer 



Questions 

• Communication model: Who are the parties? 

 

• Protocol: Who sends, who receives, and when? 



Client / Server Model 

• Server: 
– Opens a socket that accepts new connections 

– Waits for connection to come in 

– Creates a new socket for pair-wise communication 
over that new connection 

– Wait for connection to come in, repeat… 

 

• Server is connected to by client 
– Web, file system, streaming music, game, etc. 



Client / Server Model 

• Client: 
– Opens a socket 

– Initiates connection to server 

– Communicates to server over socket 

 

• Examples: 
– Firefox (web client) 

– Thunderbird (mail client) 

– What you’ll be making soon: hangman client 



Protocol 

• Rules for communication that dictate: 

– message format 

– whose turn it is to send, when to recv 

 

• Example: HTTP 



Hangman 

Server 

 

 

• Send categories (string 
terminated by \r\n) 

 

 

• Repeat: 
– Send game status (string 

terminated by \r\n) 

Client 

• Connect to server 

• Send greeting: “HELLO\r\n” 

 

 

• Select a category: 
“CATEGORY N\r\n” 

 

• Repeat: 

 
– Send letter guess: 

“GUESS N\r\n” 



Try telnet 

telnet sesame.cs.swarthmore.edu 9000 

 

HELLO 

CATEGORY 1 

GUESS t 

GUESS s 

GUESS e 

… 

Note: telnet will automatically put 
in the \r\n when you press enter. 



Writing a client 

• Typing all these commands in telnet is a drag 
 

• Connect to a CS lab machine 
– Starter code in ~kwebb/public/cs31/hangman-client.py 
– Starter code will read input from user 
– You need to add socket calls 

 

• s = socket.socket(…) will create a socket 
• Then you can call methods on that socket: 

– s.send(string_to_send) 
– string_received = s.recv() Search online: 

“python socket” to get 
the documentation. 

Connect to sesame.cs.swarthmore.edu on port 10000 


