
CS 31: Intro to Systems
Course Recap

Kevin Webb

Swarthmore College

April 26, 2016

Reading Quiz

Reading Quiz

Just kidding. Did I scare you?

Final Exam

• Thursday, May 12, 2:00 PM. SCI 199

• Similar format to the midterm

• You get ~100% more time

• Exam is ~15% longer

• ~2/3 post-midterm material

Course Recap

• This course was a vertical slice of computer

– From lowest level: simple logic

– To high level: large, complex programs run on OS

• Big goal: make complex machine easier to use

– Hide details with the right abstractions

– Improve performance when possible

Lowest Level

• Storing and representing data

– 2’s complement integers, floating point, etc.

– Arithmetic using bits

• Logic gates: simple hardware

a

b
out

a

b
out a out

Hardware Abstraction: Circuits

• Combining gates to build specific circuits

– arithmetic (adders, ALUs)

– storage (latches, registers)

– control (fetch, decode, multiplex)

= 1-bit
adder

Cin

Cout

A

B Sum

CPU

• Combine circuits to create a CPU

– Periodic clock: fetch, decode, execute instructions

Data in

32-bit Register #0
WE

Data in

32-bit Register #1
WE

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program
Counter (PC):

Memory address of
next instr

Instruction
Register (IR):

Instruction contents
(bits)

Instruction Set Architecture

• ISA defines CPU / software interaction

– Machine properties (# registers, address modes)

– Method for controlling hardware (assembly lang)

x = y >> 3 | x * 8

 movl -8(%ebp), %eax # R[%eax] x

 imull $8, %eax # R[%eax] x*8

 movl -12(%ebp), %edx # R[%edx] y

 rshl $3, %edx # R[%edx] y >> 3

 orl %eax, %edx # R[%edx] y>>3 | x*8

 movl %edx, -8(%ebp) # M[R[%ebp-8]] result

Conventions

• Agreed upon system for using ISA

– e.g., manipulating the stack, register meaning

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee

…

First Argument to Callee

Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s
frame.

Callee’s
frame.

Storage and Memory

• Allocating memory (stack vs. heap)

• Pointers

– malloc() / free()

– address of (&)

– dereferencing

– arrays, 2D arrays

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
 than local
 disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Caching

• Improve performance by keeping a small
memory for frequently-used data

– Many parameters inform address division (tag, idx)

• direct map vs. associative

• block size

• Exploit major idea: Locality

– temporal / spatial

Operating System

• Software supports: making programs easy/fast

• Three major abstractions:

1. Process

2. Thread

3. Virtual memory

• Mechanism vs. policy

Processes

• Program in execution
– fork() / exit() to create / terminate

• Represents all of the resources of a task
– virtual address space (process memory)

– open files

– process ID, other accounting info

• One or more threads of execution

Threads
• Execution context within a process

• Independently scheduled

Thread 1
PC1

SP1

Thread 2

Thread 3

PC2

SP2 PC3

SP3

Process 1

Text

Data

Stack 1

OS

Heap

Stack 2

Stack 3

Virtual Memory

• Allow processes to behave as if they have the entire
memory of the machine

• Translate from virtual (fantasy) address to physical

Physical
Memory

Virtual
Memory

(OS Mapping)

Virtual Address
Page p Offset i

Physical Address

Frame V Perm … R D

Virtual Memory

• Use disk to store data that hasn’t been used lately

– (Another instance of exploiting locality)

VM PM

Page
Table

Memory
Hierarchy

Mechanism & Policy

• Mechanism: the ability to do something

• Policy: rules for governing the mechanism(s)

• “Best” policy usually varies by workload!

Mechanism Policy

Context switching CPU scheduling

Cache eviction Cache replacement policy

VM paging to disk Page replacement policy

Concurrency & Parallelism

• Single CPU core performance has plateaued

– Hardware giving us more CPU cores instead

• Programmer’s responsibility to use them!

• Big opportunity for performance benefits!

Multi-threading in Practice (pthreads)

• Not always intuitive to reason about…

• Potential problems

– race conditions

– deadlock

– priority inversion, etc.

• Requires careful synchronization

Questions?

• Thank you for a great semester!

