CS 31: Intro to Systems Course Recap

Kevin Webb Swarthmore College April 26, 2016

Reading Quiz

Reading Quiz

Just kidding. Did I scare you?

Final Exam

- Thursday, May 12, 2:00 PM. SCI 199
- Similar format to the midterm
- You get ~100% more time
- Exam is ~15% longer
- ~2/3 post-midterm material

Course Recap

- This course was a vertical slice of computer
 - From lowest level: simple logic
 - To high level: large, complex programs run on OS

- Big goal: make complex machine easier to use
 - Hide details with the right abstractions
 - Improve performance when possible

Lowest Level

- Storing and representing data
 - 2's complement integers, floating point, etc.
 - Arithmetic using bits
- Logic gates: simple hardware

Hardware Abstraction: Circuits

- Combining gates to build specific circuits
 - arithmetic (adders, ALUs)
 - storage (latches, registers)
 - control (fetch, decode, multiplex)

CPU

- Combine circuits to create a CPU
 - Periodic clock: fetch, decode, execute instructions

Instruction Set Architecture

- ISA defines CPU / software interaction
 - Machine properties (# registers, address modes)
 - Method for controlling hardware (assembly lang)

Conventions

- Agreed upon system for using ISA
 - e.g., manipulating the stack, register meaning

Storage and Memory

• Allocating memory (stack vs. heap)

- Pointers
 - malloc() / free()
 - address of (&)
 - dereferencing
 - arrays, 2D arrays

The Memory Hierarchy

Caching

- Improve performance by keeping a small memory for frequently-used data
 - Many parameters inform address division (tag, idx)
 - direct map vs. associative
 - block size
- Exploit major idea: Locality
 - temporal / spatial

Operating System

• Software supports: making programs easy/fast

- Three major abstractions:
 - 1. Process
 - 2. Thread
 - 3. Virtual memory

• Mechanism vs. policy

Processes

- Program in execution
 - fork() / exit() to create / terminate
- Represents all of the resources of a task
 - virtual address space (process memory)
 - open files
 - process ID, other accounting info
- One or more threads of execution

Threads

- Execution context within a process
- Independently scheduled

Virtual Memory

- Allow processes to behave as if they have the entire memory of the machine
- Translate from virtual (fantasy) address to physical

Virtual Memory

Memory

Hierarchy

• Use disk to store data that hasn't been used lately

- (Another instance of exploiting locality)

Mechanism & Policy

- Mechanism: the ability to do something
- Policy: rules for governing the mechanism(s)

Mechanism	Policy
Context switching	CPU scheduling
Cache eviction	Cache replacement policy
VM paging to disk	Page replacement policy

• "Best" policy usually varies by workload!

Concurrency & Parallelism

Single CPU core performance has plateaued
Hardware giving us more CPU cores instead

• Programmer's responsibility to use them!

• Big opportunity for performance benefits!

Multi-threading in Practice (pthreads)

• Not always intuitive to reason about...

- Potential problems
 - race conditions
 - deadlock
 - priority inversion, etc.
- Requires careful synchronization

Questions?

• Thank you for a great semester!