
CS 31: Intro to Systems
Misc. Threading

Kevin Webb

Swarthmore College

April 26, 2016

Next Lab / Course Survey

• Lauri (academic support coordinator) will send a course
survey link
– ~15 minutes in lab to fill it out

• I will NOT see survey results until grades are submitted.

Please be honest / constructive!

• I will be told how many people have completed the
survey. If > 90% of class, I’ll drop another
quiz/absence.

• Remaining time for coding/debugging GOL

Agenda

• Classic thread patterns

• Pthreads primitives and examples of other forms
of synchronization:
– Condition variables
– Barriers
– RW locks
– Message passing

• Message passing: alternative to shared memory

Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection

The Producer/Consumer Problem

• Producer produces data, places it in shared buffer

• Consumer consumes data, removes from buffer

• Cooperation: Producer feeds Consumer

– How does data get from Producer to Consumer?

– How does Consumer wait for Producer?

Producer Consumer 3 5 4 9 2

in

out
buf

Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

Producer

while (TRUE) {

 buf[in] = Produce ();

 in = (in + 1)%N;

}

Consumer

while (TRUE) {

 Consume (buf[out]);

 out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

• Is there a problem with this code?
A. Yes, this is broken.

B. No, this ought to be fine.

Producer

while (TRUE) {

 buf[in] = Produce ();

 in = (in + 1)%N;

}

Consumer

while (TRUE) {

 Consume (buf[out]);

 out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

This producer/consumer scenario
requires synchronization to…

A. Avoid deadlock

B. Avoid double writes or empty consumes of buf[] slots

C. Protect a critical section with mutual exclusion

D. Copy data from producer to consumer

Producer

while (TRUE) {

 buf[in] = Produce ();

 in = (in + 1)%N;

}

Consumer

while (TRUE) {

 Consume (buf[out]);

 out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

Adding Semaphores

Producer

while (TRUE) {

 wait (X);

 buf[in] = Produce ();

 in = (in + 1)%N;

 signal (Y);

}

Consumer

while (TRUE) {

 wait (Z);

 Consume (buf[out]);

 out = (out + 1)%N;

 signal (W);

}

shared int buf[N], in = 0, out = 0;

shared sem filledslots = 0, emptyslots = N;

• Recall semaphores:

– wait(): decrement sem and block if sem value < 0

– signal(): increment sem and unblock a waiting process (if any)

Suppose we now have two
semaphores to protect our array.
Where do we use them?

Producer

while (TRUE) {

 wait (X);

 buf[in] = Produce ();

 in = (in + 1)%N;

 signal (Y);

}

Consumer

while (TRUE) {

 wait (Z);

 Consume (buf[out]);

 out = (out + 1)%N;

 signal (W);

}

shared int buf[N], in = 0, out = 0;

shared sem filledslots = 0, emptyslots = N;

Answer choice X Y Z W

A. emptyslots emptyslots filledslots filledslots

B. emptyslots filledslots filledslots emptyslots

C. filledslots emptyslots emptyslots filledslots

Add Semaphores for Synchronization

• Buffer empty, Consumer waits

• Buffer full, Producer waits

• Don’t confuse synchronization with mutual exclusion

Producer

while (TRUE) {

 wait (emptyslots);

 buf[in] = Produce ();

 in = (in + 1)%N;

 signal (filledslots);

}

Consumer

while (TRUE) {

 wait (filledslots);

 Consume (buf[out]);

 out = (out + 1)%N;

 signal (emptyslots);

}

shared int buf[N], in = 0, out = 0;

shared sem filledslots = 0, emptyslots = N;

Synchronization: More than Mutexes

• “I want to block a thread until something
specific happens.”

– Condition variable: wait for a condition to be true

Condition Variables

• In the pthreads library:
– pthread_cond_init: Initialize CV

– pthread_cond_wait: Wait on CV

– pthread_cond_signal: Wakeup one waiter

– pthread_cond_broadcast: Wakeup all waiters

• Condition variable is associated with a mutex:
1. Lock mutex, realize conditions aren’t ready yet

2. Temporarily give up mutex until CV signaled

3. Reacquire mutex and wake up when ready

Condition Variable Pattern
while (TRUE) {

 //independent code

 lock(m);

 while (conditions bad)

 wait(cond, m);

 //proceed knowing that conditions are now good

 signal (other_cond); // Let other thread know

 unlock(m);

}

Synchronization: More than Mutexes

• “I want to block a thread until something
specific happens.”

– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same
point.”

– Barrier: wait for everyone to catch up.

Barriers

• Used to coordinate threads, but also other
forms of concurrent execution.

• Often found in simulations that have discrete
rounds. (e.g., game of life)

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

T1 T0 T2 T3 T4

Barrier (0 waiting)

Time

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing
current round at different rates.

Time

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

Barrier (3 waiting)

Threads that make it to barrier must
wait for all others to get there.

T1

T0 T2

T3

T4

Time

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

Barrier (5 waiting)

Barrier allows threads to pass when
N threads reach it.

T1 T0 T2 T3 T4

Matches

Time

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

Barrier (0 waiting)

Threads compute next round, wait
on barrier again, repeat…

T1

T0 T2 T3

T4

Time

Synchronization: More than Mutexes

• “I want to block a thread until something
specific happens.”
– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same
point.”
– Barrier: wait for everyone to catch up.

• “I want my threads to share a critical section
when they’re reading, but still safely write.”
– Readers/writers lock: distinguish how lock is used

Readers/Writers

• Readers/Writers Problem:

– An object is shared among several threads

– Some threads only read the object, others only write it

– We can safely allow multiple readers

– But only one writer

• pthread_rwlock_t:

– pthread_rwlock_init: initialize rwlock

– pthread_rwlock_rdlock: lock for reading

– pthread_rwlock_wrlock: lock for writing

Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done:

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done:
Farm out work to threads
when they’re idle.

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done:

As threads finish work at their own
rate, they grab the next item in queue.

Common for “embarrassingly
parallel” algorithms.

Works across the network too!

Thread Per Client

• Consider Web server:
– Client connects

– Client asks for a page:
• http://web.cs.swarthmore.edu/~kwebb/cs31

• “Give me /~kwebb/cs31”

– Server looks through file system to find path (I/O)

– Server sends back html for client browser (I/O)

• Web server does this for MANY clients at once

Thread Per Client

• Server “main” thread:
– Wait for new connections

– Upon receiving one, spawn new client thread

– Continue waiting for new connections, repeat…

• Client threads:
– Read client request, find files in file system

– Send files back to client

– Nice property: Each client is independent

– Nice property: When a thread does I/O, it gets blocked
for a while. OS can schedule another one.

Message Passing

• Operating system mechanism for IPC
– send (destination, message_buffer)

– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers

• Synchronization: can’t receive until message is sent

send (to, buf)

receive (from, buf)

kernel

P1 P2

Suppose we’re using message passing,
will this code operate correctly?

A. No, there is a race condition.

B. No, we need to protect item.

C. Yes, this code is correct.

Producer

int item;

while (TRUE) {

 item = Produce ();

 send (Consumer, &item);

}

Consumer

int item;

while (TRUE) {

 receive (Producer, &item);

 Consume (item);

}

/* NO SHARED MEMORY */

This code is correct and relatively
simple. Why don’t we always just use
message passing (vs semaphores, etc.)?

A. Message passing copies more data.

B. Message passing only works across a network.

C. Message passing is a security risk.

D. We usually do use message passing!

Producer

int item;

while (TRUE) {

 item = Produce ();

 send (Consumer, &item);

}

Consumer

int item;

while (TRUE) {

 receive (Producer, &item);

 Consume (item);

}

/* NO SHARED MEMORY */

Issues with Message Passing

• Who should messages be addressed to?
– ports (mailboxes) rather than processes/threads

• What if it wants to receive from anyone?
– pid = receive (*, msg)

• Synchronous (blocking) vs. asynchronous (non-
blocking)
– Typically, send is non-blocking, receive is blocking

• Kernel buffering: how many sends w/o receives?

• Good paradigm for IPC over networks

Summary

• Many ways to solve the same classic problems
– Producer/Consumer: semaphores, CVs, messages

• There’s more to synchronization than just
mutual exclusion!
– CVs, barriers, RWlocks, and others.

• Message passing doesn’t require shared mem.
– Useful for “threads” on different machines.

