CS 31: Intro to Systems
Misc. Threading

Kevin Webb
Swarthmore College
April 26, 2016

Next Lab / Course Survey

Lauri (academic support coordinator) will send a course
survey link

— ~15 minutes in lab to fill it out

| will NOT see survey results until grades are submitted.
Please be honest / constructive!

| will be told how many people have completed the
survey. If >90% of class, I'll drop another
quiz/absence.

Remaining time for coding/debugging GOL

Agenda

e Classic thread patterns

* Pthreads primitives and examples of other forms
of synchronization:

— Condition variables
— Barriers

— RW locks

— Message passing

* Message passing: alternative to shared memory

Common Thread Patterns

* Producer / Consumer (a.k.a. Bounded buffer)

* Thread pool (a.k.a. work queue)

* Thread per client connection

The Producer/Consumer Problem

Producer 213|5 419
buf

| > out

* Producer produces data, places it in shared buffer

 Consumer consumes data, removes from buffer

* Cooperation: Producer feeds Consumer
— How does data get from Producer to Consumer?
— How does Consumer wait for Producer?

Producer/Consumer: Shared Memory

shared int buf[N], in =

Producer
while (TRUE) {
buf[in] = Produce () ;

in = (in + 1)%N;

}

0O, out = 0;
Consumer
(TRUE) {
(buf[out]) ;

(out + 1)%N;

while
Consume
out =

}

e Data transferred in shared memory buffer.

Producer/Consumer: Shared Memory

shared int buf[N], in = 0, out = 0O;

Producer Consumer

while (TRUE) { while (TRUE) {
buf[in] = Produce (); Consume (buf[out]);
in = (in + 1)%N; out = (out + 1)%N;

} }
e Data transferred in shared memory buffer.

* |s there a problem with this code?
A. Yes, this is broken.
B. No, this ought to be fine.

This producer/consumer scenario
requires synchronization to...

shared int buf[N], in = 0, out = 0;

Producer Consumer

while (TRUE) { while (TRUE) {
buf[in] = Produce (); Consume (buf[out]);
in = (in + 1)%N; out = (out + 1)%N;

} }

Avoid deadlock
Avoid double writes or empty consumes of buf(] slots
Protect a critical section with mutual exclusion

Copy data from producer to consumer

Adding Semaphores

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = Ny

Producer Consumer

while (TRUE) { while (TRUE) {
wait (X); walit (2);
buf[in] = Produce (); Consume (buf[out]) :;
in = (in + 1)%N; out = (out + 1) %N;
signal (Y); signal (W),

} }
* Recall semaphores:

— wait(): decrement sem and block if sem value <0

— signal(): increment sem and unblock a waiting process (if any)

Suppose we now have two
semaphores to protect our array.
Where do we use them?

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = Ny

Producer Consumer
while (TRUE) { while (TRUE) {
walt (X); walilt (2);
buf[in] = Produce (); Consume (buf[out]) :;
in = (in + 1)%N; out = (out + 1)5%N;
signal (Y); signal (W),
-—--
emptyslots emptyslots filledslots filledslots
B. emptyslots filledslots filledslots emptyslots

C. filledslots emptyslots emptyslots filledslots

Add Semaphores for Synchronization

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = Nj;

Producer Consumer

while (TRUE) { while (TRUE) {
walt (emptyslots); walt (filledslots);
buf[in] = Produce (); Consume (bufl[out]);
in = (in + 1) %N; out = (out + 1)5%N;
signal (filledslots); signal (emptyslots);

})
e Buffer empty, Consumer waits

e Buffer full, Producer waits
e Don’t confuse synchronization with mutual exclusion

Synchronization: More than Mutexes

* “I want to block a thread until something
specific happens.”

— Condition variable: wait for a condition to be true

Condition Variables

* |n the pthreads library:

— pthread_cond_init: Initialize CV
— pthread _cond_wait: Wait on CV
— pthread_cond_signal: Wakeup one waiter

— pthread _cond _broadcast: Wakeup all waiters

* Condition variable is associated with a mutex:
1. Lock mutex, realize conditions aren’t ready yet
2. Temporarily give up mutex until CV signaled
3. Reacquire mutex and wake up when ready

Condition Variable Pattern

while (TRUE) {
//independent code

lock (m) ;
while (conditions bad)
wait (cond, m);

//proceed knowing that conditions are now good

signal (other cond); // Let other thread know
unlock (m) ;

Synchronization: More than Mutexes

* “l want all my threads to sync up at the same
point.”

— Barrier: wait for everyone to catch up.

Barriers

 Used to coordinate threads, but also other
forms of concurrent execution.

 Often found in simulations that have discrete
rounds. (e.g., game of life)

Barrier Example, N Threads

shared barrier b;
init_barrier(&b, N) ;
create threads (N, func);

volid *func (void *arg) {
while (..) {
compute sim round ()

barrier wailt (&b)

Time

Barrier (0O waiting)

Barrier Example, N Threads

shared barrier b;

inlt barrier (&b, N);

create threads (N, func);

volid *func (void *arg) {
while (..) {
compute sim round ()

barrier wailt (&b)

Threads make progress computing
current round at different rates.

Time

<€

Barrier (0O waiting)

Barrier Example, N Threads

shared barrier b;
init_barrier(&b, N) ;
create threads (N, func);

volid *func (void *arg) {
while (..) {
compute sim round ()

barrier wailt (&b)

Threads that make it to barrier must
wait for all others to get there.

Time

Barrier (3 waiting)

Barrier Example, N Threads

, Barrier allows threads to pass when
shared barrier Db; N threads reach it.

Time
inlt barrier (&b, N)

Matches

create threads (N, func
v
void *func (void *argqg) }“ . .
while (..) {

Barrier (5 waiting)

compute sim round (

barrier wailt (&b)

Barrier Example, N Threads

shared barrier b;
init_barrier(&b, N) ;
create threads (N, func);

volid *func (void *arg) {
while (..) {
compute sim round ()

barrier wailt (&b)

Threads compute next round, wait
on barrier again, repeat...

Time

Barrier (0O waiting)

Synchronization: More than Mutexes

* “l want my threads to share a critical section
when they’re reading, but still safely write.”

— Readers/writers lock: distinguish how lock is used

Readers/Writers

 Readers/Writers Problem:
— An object is shared among several threads
— Some threads only read the object, others only write it
— We can safely allow multiple readers
— But only one writer

* pthread rwlock t:
— pthread_rwlock_init: initialize rwlock

— pthread_rwlock_rdlock: lock for reading
— pthread _rwlock_ wrlock: lock for writing

Common Thread Patterns

* Producer / Consumer (a.k.a. Bounded buffer)

* Thread pool (a.k.a. work queue)

* Thread per client connection

Thread Pool / Work Queue

* Common way of structuring threaded apps:

Thread Pool

Thread Pool / Work Queue

* Common way of structuring threaded apps:

Queue of work to be done: D

Thread Pool

Thread Pool / Work Queue

* Common way of structuring threaded apps:

Farm out work to threads
when they’re idle.

Queue of work to be done:

/‘\\\

Thread Pool

Thread Pool / Work Queue

* Common way of structuring threaded apps:

Queue of work to be done: HINIIED

Thread Pool

As threads finish work at their own Common for “embarrassingly
rate, they grab the next item in queue. parallel” algorithms.

Works across the network too!

Thread Per Client

e Consider Web server:
— Client connects

— Client asks for a page:
 http://web.cs.swarthmore.edu/~kwebb/cs31
e “Give me /~kwebb/cs31”

— Server looks through file system to find path (1/0)
— Server sends back html for client browser (1/0)

e \Web server does this for MANY clients at once

Thread Per Client

e Server “main” thread:
— Wait for new connections
— Upon receiving one, spawn new client thread
— Continue waiting for new connections, repeat...

* Client threads:
— Read client request, find files in file system
— Send files back to client
— Nice property: Each client is independent

— Nice property: When a thread does I/0O, it gets blocked
for a while. OS can schedule another one.

Message Passing

receive (from, buf)

send (to, buf)

* Operating system mechanism for IPC
— send (destination, message buffer)
— recelve (source, message buffer)

e Data transfer: in to and out of kernel message buffers
* Synchronization: can’t receive until message is sent

Suppose we’re using message passing,
will this code operate correctly?

/* NO SHARED MEMORY */

Producer Consumer
int item; int item;

while (TRUE) { while (TRUE) {
item = Produce (); receive (Producer, &item);
send (Consumer, &item); Consume (item):;

} }

A. No, there is a race condition.
B. No, we need to protect item.
C. Yes, this code is correct.

This code is correct and relatively
simple. Why don’t we always just use
message passing (vs semaphores, etc.)?

/* NO SHARED MEMORY */

Producer Consumer

int item; int item;

while (TRUE) { while (TRUE) {
item = Produce () receive (Producer, &item);
send (Consumer, &item); Consume (item);;

} }

Message passing copies more data.
Message passing only works across a network.
Message passing is a security risk.

O WP

We usually do use message passing!

Issues with Message Passing

Who should messages be addressed to?

— ports (mailboxes) rather than processes/threads
What if it wants to receive from anyone?

—pld = receilve (*, msq)

Synchronous (blocking) vs. asynchronous (non-
blocking)

— Typically, send is non-blocking, receive is blocking
Kernel buffering: how many sends w/o receives?

Good paradigm for IPC over networks

Summary

 Many ways to solve the same classic problems
— Producer/Consumer: semaphores, CVs, messages

* There’s more to synchronization than just
mutual exclusion!

— CVs, barriers, RWlocks, and others.

* Message passing doesn’t require shared mem.
— Useful for “threads” on different machines.

