
CS 31: Intro to Systems
Deadlock

Kevin Webb

Swarthmore College

April 21, 2016

Reading Quiz

“Deadly Embrace”

• The Structure of the THE-Multiprogramming
System (Edsger Dijkstra, 1968)

• Also introduced semaphores

• Deadlock is as old as synchronization

What is Deadlock?

• Deadlock is a problem that can arise:

– When processes compete for access to limited resources

– When threads are incorrectly synchronized

• Definition:

– Deadlock exists among a set of threads if every thread is
waiting for an event that can be caused only by another
thread in the set.

What is Deadlock?

• Set of threads are permanently blocked
– Unblocking of one relies on progress of another

– But none can make progress!

• Example
– Threads A and B

– Resources X and Y

– A holding X, waiting for Y

– B holding Y, waiting for X

– Each is waiting for the other; will wait forever

A

X

Y

B

waiting
for

waiting
for

holding

holding

Traffic Jam as Example of Deadlock

• Cars A, B, C, D

• Road W, X, Y, Z

• Car A holds road space
Y, waiting for space Z

• “Gridlock”

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Traffic Jam as Example of Deadlock

A

Z

B

D

W

C

Y X

Resource Allocation
Graph

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Four Conditions for Deadlock

1. Mutual Exclusion

– Only one thread may use a resource at a time.

2. Hold-and-Wait

– Thread holds resource while waiting for another.

3. No Preemption

– Can’t take a resource away from a thread.

4. Circular Wait

– The waiting threads form a cycle.

Four Conditions for Deadlock

1. Mutual Exclusion

– Only one thread may use a resource at a time.

2. Hold-and-Wait

– Thread holds resource while waiting for another.

3. No Preemption

– Can’t take a resource away from a thread.

4. Circular Wait

– The waiting threads form a cycle.

Examples of Deadlock

• Memory (a reusable resource)
– total memory = 200KB

– T1 requests 80KB

– T2 requests 70KB

– T1 requests 60KB (wait)

– T2 requests 80KB (wait)

• Messages (a consumable resource)
– T1: receive M2 from P2

– T2: receive M1 from P1

T1

T2

T1

M1

M2

T2

Banking, Revisited

struct account {

 mutex lock;

 int balance;

}

Transfer(from_acct, to_acct, amt) {

 lock(from_acct.lock);

 lock(to_acct.lock)

 from_acct.balance -= amt;

 to_acct.balance += amt;

 unlock(to_acct.lock);

 unlock(from_acct.lock);

}

If multiple threads are executing this code,
is there a race? Could a deadlock occur?
struct account {

 mutex lock;

 int balance;

}

Transfer(from_acct, to_acct, amt) {

 lock(from_acct.lock);

 lock(to_acct.lock)

 from_acct.balance -= amt;

 to_acct.balance += amt;

 unlock(to_acct.lock);

 unlock(from_acct.lock);

}

Clicker
Choice

Potential
Race?

Potential
Deadlock?

A No No

B Yes No

C No Yes

D Yes Yes

If there’s potential for a race/deadlock, what
execution ordering will trigger it?

Common Deadlock

Thread 0
Transfer(acctA, acctB, 20);

Transfer(…) {

 lock(acctA.lock);

 lock(acctB.lock);

Thread 1
Transfer(acctB, acctA, 40);

Transfer(…) {

 lock(acctB.lock);

 lock(acctA.lock);

Common Deadlock

Thread 0
Transfer(acctA, acctB, 20);

Transfer(…) {

 lock(acctA.lock);

 T0 gets to here

 lock(acctB.lock);

Thread 1
Transfer(acctA, acctB, 40);

Transfer(…) {

 lock(acctB.lock);

 T1 gets to here

 lock(acctA.lock);

T0 holds A’s lock, will make no progress until it can get B’s.
T1 holds B’s lock, will make no progress until it can get A’s.

How to Attack the Deadlock Problem

• What should your OS do to help you?

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks

– Rather, if they happen, detect and resolve

How to Attack the Deadlock Problem

• What should your OS do to help you?

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks

– Rather, if they happen, detect and resolve

How Can We Prevent a Traffic Jam?

 • Do intersections usually
look like this one?

• We have road infrastructure
(mechanisms)

• We have road rules
(policies)

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Suppose we add north/south stop signs.
Which condition would that eliminate?

W X

Y Z

C

A

B

D

A. Mutual exclusion

B. Hold and wait

C. No preemption

D. Circular wait

E. More than one

Deadlock Prevention

• Simply prevent any single condition for deadlock

1. Mutual exclusion

– Make all resources sharable

2. Hold-and-wait

– Get all resources simultaneously (wait until all free)

– Only request resources when it has none

Deadlock Prevention

• Simply prevent any single condition for deadlock

3. No preemption

– Allow resources to be taken away (at any time)

4. Circular wait

– Order all the resources, force ordered acquisition

Which of these conditions is easiest to
give up to prevent deadlocks?

A. Mutual exclusion (make everything sharable)

B. Hold and wait (must get all resources at once)

C. No preemption (resources can be taken away)

D. Circular wait (total order on resource requests)

E. I’m not willing to give up any of these!

How to Attack the Deadlock Problem

• Deadlock Prevention

– Make deadlock impossible by removing a condition

• Deadlock Avoidance

– Avoid getting into situations that lead to deadlock

• Deadlock Detection

– Don’t try to stop deadlocks

– Rather, if they happen, detect and resolve

Deadlock Avoidance

• Avoid situations that lead to deadlock

– Selective prevention

– Remove condition only when deadlock a possibility

• Works with incremental resource requests

– Resources are asked for in increments

– Do not grant request that can lead to a deadlock

• Requires knowledge of maximum resource
requirements

Banker’s Algorithm

• Fixed number of threads and resources
– Each thread has zero or more resources allocated

• System state: either safe or unsafe
– Depends on allocation of resources to threads

• Safe: deadlock is absolutely avoidable
– Can avoid deadlock by certain order of execution

• Unsafe: deadlock is possible (but not certain)
– May not be able to avoid deadlock

Banker’s Algorithm for Avoidance

• The Banker’s Algorithm is the classic approach to
deadlock avoidance for resources with multiple units

– 1. Assign a credit limit to each customer (thread)

• Maximum credit claim must be stated in advance

– 2. Reject any request that leads to a dangerous state

• A dangerous state is one where a sudden request by any
customer for the full credit limit could lead to deadlock

• A recursive reduction procedure recognizes dangerous states

– 3. In practice, the system must keep resource usage well
below capacity to maintain a resource surplus

How Can We Avoid a Traffic Jam?

• What are the incremental
resources?

• Safe* state:

– No possibility of deadlock

– <= 3 cars in intersection

• Unsafe state:

– Deadlock possible, don’t allow

C

A

B

D

*Don’t try this while driving…

Deadlock Avoidance

• Eliminates deadlock

• Must know max resource usage in advance

– Do we always know resources at compile time?

– Do we specify resources at run time? Could we?

How to Attack the Deadlock Problem

• Deadlock Prevention

– Make deadlock impossible by removing a condition

• Deadlock Avoidance

– Avoid getting into situations that lead to deadlock

• Deadlock Detection

– Don’t try to stop deadlocks

– Rather, if they happen, detect and resolve

Deadlock Detection and Recovery

• Do nothing special to prevent/avoid deadlocks

– If they happen, they happen

– Periodically, try to detect if a deadlock occurred

– Do something to resolve it

• Reasoning

– Deadlocks rarely happen (hopefully)

– Cost of prevention or avoidance not worth it

– Deal with them in special way (may be very costly)

Detecting a Deadlock

• Construct resource graph

• Requires

– Identifying all resources

– Tracking their use

– Periodically running detection
algorithm

A

Z

B

D

W

C

Y X

Recovery from Deadlock

• Abort all deadlocked threads / processes

– Will remove deadlock, but drastic and costly

Recovery from Deadlock

• Abort all deadlocked threads / processes

– Will remove deadlock, but drastic and costly

• Abort deadlocked threads one-at-at-time

– Do until deadlock goes away (need to detect)

– What order should threads be aborted?

Recovery from Deadlock

• Preempt resources (force their release)

– Need to select thread and resource to preempt

– Need to rollback thread to previous state

– Need to prevent starvation

• What about resources in inconsistent states

– Such as files that are partially written?

– Or interrupted message (e.g., file) transfers?

Which type of deadlock-handling
scheme would you expect to see in a
modern OS (Linux/Windows/OS X) ?

A. Deadlock prevention

B. Deadlock avoidance

C. Deadlock detection/recovery

D. Something else

Which type of deadlock-handling
scheme would you expect to see in a
modern OS (Linux/Windows/OS X) ?

A. Deadlock prevention

B. Deadlock avoidance

C. Deadlock detection/recovery

D. Something else

“Ostrich Algorithm”

How to Attack the Deadlock Problem

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks

– Rather, if they happen, detect and resolve

• These all have major drawbacks…

Other Thread Complications

• Deadlock is not the only problem

• Performance: too much locking?

• Priority inversion

• …

Priority Inversion

• Problem: Low priority thread holds lock, high
priority thread waiting for lock.

– What needs to happen: boost low priority thread
so that it can finish, release the lock

– What sometimes happens in practice: low priority
thread not scheduled, can’t release lock

• Example: Mars Pathfinder (1997)

Sojourner Rover on Mars

Mars Rover

• Three periodic tasks:

1. Low priority: collect meteorological data

2. Medium priority: communicate with NASA

3. High priority: data storage/movement

• Tasks 1 and 3 require exclusive access to a
hardware bus to move data.

– Bus protected by a mutex.

Mars Rover

• Failsafe timer (watchdog): if high priority task
doesn’t complete in time, reboot system

• Observation: uh-oh, this thing seems to be
rebooting a lot, we’re losing data…

JPL engineers later confessed that one or two system resets had
occurred in their months of pre-flight testing. They had never
been reproducible or explainable, and so the engineers, in a
very human-nature response of denial, decided that they
probably weren't important, using the rationale "it was probably
caused by a hardware glitch".

What Happened: Priority Inversion

Time

H

M

L Low priority task, running happily.

What Happened: Priority Inversion

Time

H

M

L

Low priority task acquires mutex lock.

What Happened: Priority Inversion

Time

H

M

L Blocked

Medium task starts up, takes CPU.

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Low priority task can’t give up
the lock because it can’t run -
medium task trumps it.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

Blocked

High priority is
taking too long.

Reboot!

Solution: Priority Inheritance

Time

H

M

L -> H Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

Give to blue red’s (higher) priority!

Solution: Priority Inheritance

Time

H

M

Blocked

Blocked

Blocked

…

L

Release lock, revert to low priority.

High priority finishes in time.

Deadlock Summary

• Deadlock occurs when threads are waiting on each
other and cannot make progress.

• Deadlock requires four conditions:
– Mutual exclusion, hold and wait, no resource preemption,

circular wait

• Approaches to dealing with deadlock:
– Ignore it – Living life on the edge (most common!)

– Prevention – Make one of the four conditions impossible

– Avoidance – Banker’s Algorithm (control allocation)

– Detection and Recovery – Look for a cycle, preempt/abort

