
CS 31: Intro to Systems
Thread Synchronization

Kevin Webb

Swarthmore College

April 14, 2016

Reading Quiz

Recap

• To speed up a job, must divide it across multiple cores.

• Thread: abstraction for execution within process.

– Threads share process memory.

– Threads may need to communicate to achieve goal

• Thread communication:

– To solve task (e.g., neighbor GOL cells)

– To prevent bad interactions (synchronization)

Synchronization

• Synchronize: to (arrange events to) happen at
same time (or ensure that they don’t)

• Thread synchronization

– When one thread has to wait for another

– Events in threads that occur “at the same time”

• Uses of synchronization

– Prevent race conditions

– Wait for resources to become available

Synchronization Example

• Coordination required:

– Threads in different regions must work together to
compute new value for boundary cells.

– Threads might not run at the same speed
(depends on the OS scheduler). Can’t let one
region get too far ahead.

One core: Four cores:

Thread Ordering
(Why threads require care. Humans aren’t good at reasoning about this.)

• As a programmer you have no idea when
threads will run. The OS schedules them, and
the schedule will vary across runs.

• It might decide to context switch from one
thread to another at any time.

• Your code must be prepared for this!

– Ask yourself: “Would something bad happen if we
context switched here?”

Example: The Credit/Debit Problem

• Say you have $1000 in your bank account

– You deposit $100

– You also withdraw $100

• How much should be in your account?

• What if your deposit and withdrawal occur at
the same time, at different ATMs?

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Say T0 runs first

Read $1000 into b

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b

Debit by $100

Write $900

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b

Debit by $100

Write $900

Switch back to T0

Read $1000 into b

Credit $100

Write $1100

Bank gave you $100!

What went wrong?

“Critical Section”

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Bank gave you $100!

What went wrong?

Badness

if context

switch

here!

To Avoid Race Conditions

1. Identify critical sections

2. Use synchronization to enforce mutual exclusion

– Only one thread active in a critical section

Thread 0

- Critical -
- Section -

Thread 1

- Critical -
- Section -

What Are Critical Sections?

• Sections of code executed by multiple threads

– Access shared variables, often making local copy

– Places where order of execution or thread
interleaving will affect the outcome

• Must run atomically with respect to each other

– Atomicity: runs as an entire unit or not at all.
Cannot be divided into smaller parts.

Which code region is a critical section?

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 a += 1

 return a;

}

Thread A

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 a += 1

 return a;

}

Thread B

 s = 40;

shared

memory

A
C

B

D E

Which code region is a critical section?

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 a += 1

 return a;

}

Thread A

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 a += 1

 return a;

}

Thread B

 s = 40;

shared

memory

Which values might the shared s variable
hold after both threads finish?

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

Thread A

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 return a;

}

Thread B

 s = 40;

shared

memory

A. 30
B. 20 or 30
C. 20, 30, or 50
D. Another set of values

If A runs first

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 return a;

}

 s = 50;

shared

memory

Thread A Thread B

B runs after A Completes

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 return a;

}

 s = 30;

shared

memory

Thread A Thread B

What about interleaving?

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 return a;

}

 s = 40;

shared

memory

Thread A Thread B

Is there a race condition?
Suppose count is a global variable, multiple threads increment it:

count++;

A. Yes, there’s a race condition (count++ is a critical section).

B. No, there’s no race condition (count++ is not a critical section).

C. Cannot be determined

movl (%edx), %eax // read count value

addl $1, %eax // modify value

movl %eax, (%edx) // write count

How about if compiler implements it as:

incl (%edx) // increment value

How about if compiler implements it as:

Four Rules for Mutual Exclusion

1. No two threads can be inside their critical
sections at the same time.

2. No thread outside its critical section may
prevent others from entering their critical
sections.

3. No thread should have to wait forever to
enter its critical section. (Starvation)

4. No assumptions can be made about speeds
or number of CPU’s.

How to Achieve Mutual Exclusion?

• Surround critical section with entry/exit code

• Entry code should act as a gate

– If another thread is in critical section, block

– Otherwise, allow thread to proceed

• Exit code should release other entry gates

< entry code >

< critical section >

< exit code >

< entry code >

< critical section >

< exit code >

Possible Solution: Spin Lock?

• Lock indicates whether any thread is in critical section.

T0

while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

T1

while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

shared int lock = OPEN;

Note: While loop has no body. Keeps
checking the condition as quickly as possible
until it becomes false. (It “spins”)

Possible Solution: Spin Lock?

• Lock indicates whether any thread is in critical section.

• Is there a problem here?

– A: Yes, this is broken.

– B: No, this ought to work.

T0

while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

T1

while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

shared int lock = OPEN;

Possible Solution: Spin Lock?

T0

while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

T1

while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

shared int lock = OPEN;

• What if a context switch occurs at this point?

Possible Solution: Take Turns?

• Alternate which thread can enter critical section

• Is there a problem?

– A: Yes, this is broken.

– B: No, this ought to work.

T0

while (turn != T0);

< critical section >

turn = T1;

T1

while (turn != T1);

< critical section >

turn = T0;

shared int turn = T0;

Possible Solution: Take Turns?

• Rule #2: No thread outside its critical section
may prevent others from entering their critical
sections.

T0

while (turn != T0);

< critical section >

turn = T1;

T1

while (turn != T1);

< critical section >

turn = T0;

shared int turn = T0;

Possible Solution: State Intention?

• Each thread states it wants to enter critical section

• Is there a problem?

– A: Yes, this is broken.

– B: No, this ought to work.

T0

flag[T0] = TRUE;

while (flag[T1]);

< critical section >

flag[T0] = FALSE;

T1

flag[T1] = TRUE;

while (flag[T0]);

< critical section >

flag[T1] = FALSE;

shared boolean flag[2] = {FALSE, FALSE};

Possible Solution: State Intention?

• What if threads context switch between these
two lines?

• Rule #3: No thread should have to wait forever
to enter its critical section.

T0

flag[T0] = TRUE;

while (flag[T1]);

< critical section >

flag[T0] = FALSE;

T1

flag[T1] = TRUE;

while (flag[T0]);

< critical section >

flag[T1] = FALSE;

shared boolean flag[2] = {FALSE, FALSE};

Peterson’s Solution

• If there is competition, take turns; otherwise, enter
• Is there a problem?

• A: Yes, this is broken.
• B: No, this ought to work.

T0

flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

T1

flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

shared int turn;

shared boolean flag[2] = {FALSE, FALSE};

Spinlocks are Wasteful

• If a thread is spinning on a lock, it’s using the
CPU without making progress.

– Single-core system, prevents lock holder from
executing.

– Multi-core system, waste core time when
something else could be running.

• Ideal: thread can’t enter critical section?
Schedule something else. Consider it blocked.

Atomicity

• How do we get away from having to know about all
other interested threads?

• The implementation of acquiring/releasing critical
section must be atomic.

– An atomic operation is one which executes as though it
could not be interrupted

– Code that executes “all or nothing”

• How do we make them atomic?

– Atomic HW instructions (e.g., test-and-set)

– Allows us to build “semaphore” abstraction

Semaphores

• Semaphore: synchronization variable

– Has integer value

– List of waiting threads

• Works like a gate

• If sem > 0, gate is open

– Value equals number of threads that can enter

• Else, gate is closed

– Possibly with waiting threads

critical
section

sem = 1

sem = 2
sem = 3

sem = 0

Semaphores

• Associated with each semaphore is a queue of
waiting threads

• When wait() is called by a thread:

– If semaphore is open, thread continues

– If semaphore is closed, thread blocks on queue

• Then signal() opens the semaphore:

– If a thread is waiting on the queue, the thread is
unblocked

– If no threads are waiting on the queue, the signal is
remembered for the next thread

Semaphore Operations

sem s = n; // declare and initialize

wait (sem s) // Executes atomically

 decrement s;

 if s < 0, block thread (and associate with s);

signal (sem s) // Executes atomically

 increment s;

 if blocked threads, unblock (any) one of them;

Semaphore Operations

Based on what you know about semaphores,
should a process be able to check beforehand
whether wait(s) will cause it to block?

A. Yes, it should be able to check.
B. No, it should not be able to check.

sem s = n; // declare and initialize

wait (sem s) // Executes atomically

 decrement s;

 if s < 0, block thread (and associate with s);

signal (sem s) // Executes atomically

 increment s;

 if blocked threads, unblock (any) one of them;

Semaphore Operations

• No other operations allowed

• In particular, semaphore’s value can’t be tested!
• No thread can tell the value of s

sem s = n; // declare and initialize

wait (sem s)

 decrement s;

 if s < 0, block thread (and associate with s);

signal (sem s)

 increment s;

 if blocked threads, unblock (any) one of them;

Mutual Exclusion with Semaphores

• Use a “mutex” semaphore initialized to 1

• Only one thread can enter critical section

• Simple, works for any number of threads

• Is there any busy-waiting?

T0

wait (mutex);

< critical section >

signal (mutex);

T1

wait (mutex);

< critical section >

signal (mutex);

sem mutex = 1;

Locking Abstraction

• One way to implement critical sections is to “lock the door”
on the way in, and unlock it again on the way out
– Typically exports “nicer” interface for semaphores in user space

• A lock is an object in memory providing two operations
– acquire()/lock(): before entering the critical section

– release()/unlock(): after leaving a critical section

• Threads pair calls to acquire() and release()
– Between acquire()/release(), the thread holds the lock

– acquire() does not return until any previous holder releases

– What can happen if the calls are not paired?

Using Locks

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

Thread A

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 return a;

}

Thread B

 s = 40;

shared

memory

Using Locks

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 40;

 Lock l;

shared

memory

Thread A Thread B

Held by: Nobody

Using Locks

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 40;

 Lock l;

shared

memory

Thread A Thread B

Held by: Thread A

Using Locks

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 40;

 Lock l;

shared

memory

Thread A Thread B

Held by: Thread A

Using Locks

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 40;

 Lock l;

shared

memory

Thread A Thread B

Held by: Thread A

Lock already owned.

Must Wait!

Using Locks

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 50;

 Lock l;

shared

memory

Thread A Thread B

Held by: Nobody

Using Locks

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 30;

 Lock l;

shared

memory

Thread A Thread B

Held by: Thread B

Using Locks

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 30;

 Lock l;

shared

memory

• No matter how we order threads or when we context switch, result will
always be 30, like we expected (and probably wanted).

Thread A Thread B

Held by: Nobody

Summary

• We have no idea when OS will schedule or context
switch our threads.

– Code must be prepared, tough to reason about.

• Threads often must synchronize

– To safely communicate / transfer data, without races

• Synchronization primitives help programmers

– Kernel-level semaphores: limit # of threads that can do
something, provides atomicity

– User-level locks: built upon semaphore, provides mutual
exclusion (usually part of thread library)

