
CS 31: Intro to Systems
Threading & Parallel Applications

Kevin Webb

Swarthmore College

April 12, 2016

Reading Quiz

Making Programs Run Faster

• We all like how fast computers are…

• In the “old days” (1980’s - 2005):

– Algorithm too slow? Wait for HW to catch up.

• Modern CPUs exploit parallelism for speed:

– Executes multiple instructions at once

– Reorders instructions on the fly

From Herb Sutter,

Dr. Dobbs Journal

Processor

Design

Trends

Transistors

(*10^3)

Clock Speed

(MHZ)

Power (W)

ILP (IPC)

The “Multi-Core Era”

• Today, can’t make a single core go much faster.

– Limits on clock speed, heat, energy consumption

• Use extra transistors to put multiple CPU cores
on the chip.

• Exciting: CPU capable of doing a lot more!

• Problem: up to the programmer to take
advantage of multiple cores

– Humans bad at thinking in parallel

Parallel Abstraction

• To speed up a job, must divide it across
multiple cores.

• A process contains both execution information
and memory/resources.

• What if we want to separate the execution
information to give us parallelism in our
programs?

Which components of a process might
we replicate to take advantage of
multiple CPU cores?

A. The entire address space (memory)

B. Parts of the address space (memory)

C. OS resources (open files, etc.)

D. Execution state (PC, registers, etc.)

E. More than one of these (which?)

Threads

• Modern OSes separate the concepts of processes
and threads.

– The process defines the address space and general process
attributes (e.g., open files)

– The thread defines a sequential execution stream within a
process (PC, SP, registers)

• A thread is bound to a single process

– Processes, however, can have multiple threads

– Each process has at least one thread

Threads

Text

Data

Stack 1

Thread 1
PC1

SP1

Process 1

OS

Heap

This is the picture we’ve been
using all along:

A process with a single thread,
which has execution state
(registers) and a stack.

Threads

Thread 1
PC1

SP1

Thread 2

PC2

SP2

Process 1

Text

Data

Stack 1

OS

Heap

Stack 2

We can add a thread to the
process. New threads share all
memory (VAS) with other
threads.

New thread gets private
registers, local stack.

Threads

Thread 1
PC1

SP1

Thread 2

Thread 3

PC2

SP2 PC3

SP3

Process 1

Text

Data

Stack 1

OS

Heap

Stack 2

Stack 3

A third thread added.

Note: they’re all executing the
same program (shared
instructions in text), though
they may be at different points
in the code.

Why Use Threads?

• Separating threads and processes makes it easier to
support parallel applications:

– Creating multiple paths of execution does not require
creating new processes (less state to store, initialize - LWP)

– Low-overhead sharing between threads in same process
(threads share page tables, access same memory)

• Concurrency (multithreading) can be very useful

Concurrency?

• Several computations or threads of control are
executing simultaneously, and potentially
interacting with each other.

• We can multitask! Why does that help?

– Taking advantage of multiple CPUs / cores

– Overlapping I/O with computation

– Improving program structure

Recall: Processes

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process n

…

Kernel System

Calls
write

read

fork

System

Management
Scheduling

Context

Switching

Scheduling Threads

• We have basically two options

1. Kernel explicitly selects among threads in a process

2. Hide threads from the kernel, and have a user-level
scheduler inside each multi-threaded process

• Why do we care?

– Think about the overhead of switching between threads

– Who decides which thread in a process should go first?

– What about blocking system calls?

User-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

Kernel System

Calls
write

read

fork

Stack Stack Stack

Thread C/S + Sched
Thread C/S + Sched

Thread C/S + Sched

System Management

Process

Scheduling

Process

Context

Switching

Kernel-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

Kernel System

Calls
write

read

fork

Stack 3

Stack 2

Stack 1

Stack 2

Stack 1
Stack 1

System Management

Thread +

Process

Scheduling

Thread

Context

Switching

If you call thread_create() on a modern
OS (Linux/Mac/Windows), which type of
thread would you expect to receive?
(Why? Which would you pick?)

A. Kernel threads

B. User threads

C. Some other sort of threads

Kernel vs. User Threads

• Kernel-level threads

– Integrated with OS (informed scheduling)

– Slower to create, manipulate, synchronize

• Requires getting the OS involved, which means
changing context (relatively expensive)

• User-level threads

– Faster to create, manipulate, synchronize

– Not integrated with OS (uninformed scheduling)

• If one thread makes a syscall, all of them get blocked
because the OS doesn’t distinguish.

Threads & Sharing

• Code (text) shared by all threads in process

• Global variables and static objects are shared

– Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared

– Allocated from heap with malloc/free or new/delete

• Local variables should not be shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on
another thread’s stack

Threads & Sharing

• Local variables should not be shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on
another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Z

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference

x to access Z. Function B returns…

Threads & Sharing

• Local variables should not be shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on
another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference

x to access Z.
Z

Shared data on heap!

Thread-level Parallelism

• Speed up application by assigning portions to
CPUs/cores that process in parallel

• Requires:

– partitioning responsibilities (e.g., parallel algorithm)

– managing their interaction

• Example: game of life (next lab)
One core: Four cores:

If one CPU core can run a program at a
rate of X, how quickly will the program
run on two cores?

A. Slower than one core (<X)

B. The same speed (X)

C. Faster than one core, but not double (X-2X)

D. Twice as fast (2X)

E. More than twice as fast(>2X)

Parallel Speedup

• Performance benefit of parallel threads
depends on many factors:

– algorithm divisibility

– communication overhead

– memory hierarchy and locality

– implementation quality

• For most programs, more threads means
more communication, diminishing returns.

Summary
• Physical limits to how much faster we can make a

single core run.

– Use transistors to provide more cores.

– Parallelize applications to take advantage.

• OS abstraction: thread

– Shares most of the address space with other threads in
same process

– Gets private execution context (registers) + stack

• Coordinating threads is challenging!

