
CS 31: Intro to Systems
Processes

Kevin Webb

Swarthmore College

March 31, 2016

Reading Quiz

Anatomy of a Process

• Abstraction of a running program
– a dynamic “program in execution”

• OS keeps track of process state

– What each process is doing
– Which one gets to run next

• Basic operations

– Suspend/resume (context switch)
– Start (spawn), terminate (kill)

Timesharing

• Multiple processes, single CPU (or small number)

• Conceptually, each process makes progress over time

• In reality, each periodically gets quantum of CPU time

• Illusion of parallel progress by rapidly switching CPU

P1
P2

P3

P1 P2 P3

quantum
P1

P2

P3

time

How is Timesharing Implemented?

• Kernel keeps track of progress of each process

• Characterizes state of process’s progress

– Running: actually making progress, using CPU

– Ready: able to make progress, but not using CPU

– Blocked: not able to make progress, can’t use CPU

• Kernel selects a ready process, lets it run

– Eventually, the kernel gets back control

– Selects another ready process to run, …

Why might a process be blocked
(unable to make progress / use CPU)?

A. It’s waiting for another process to do something.

B. It’s waiting for memory to find and return a value.

C. It’s waiting for an I/O device to do something.

D. More than one of the above. (Which ones?)

E. Some other reason(s).

Process State Diagram

• State transitions
– Dispatch: allocate the CPU to a process

– Preempt: take away CPU from process

– Sleep: process gives up CPU to wait for event

– Wakeup: event occurred, make process ready

Ready Running

Blocked

dispatch

preempt

sleep wake up

Kernel Maintains Process Table

• List of processes and their states
– Also sometimes called “process control block (PCB)”

• Other state info includes
– contents of CPU context

– areas of memory being used

– other information

Process ID (PID) State Other info

1534 Ready Saved context, …

34 Running Memory areas used, …

487 Ready Saved context, …

9 Blocked Condition to unblock, …

Values of registers in
use by process

Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

Context Switching

• Allocating CPU from one process to another

– First, save context of currently running process

– Next, load context of next process to run

Context Switching

• Allocating CPU from one process to another

– First, save context of currently running process

– Next, load context of next process to run

• Loading the context

– Load general registers, stack pointer, etc.

– Load program counter (must be last instruction!)

How a Context Switch Occurs

• Process makes system call (TRAP) or is interrupted
– These are the only ways of entering the kernel

• In hardware
– Switch from user to kernel mode: amplifies power

– Go to fixed kernel location: interrupt/trap handler

• In software (in the kernel code)
– Save context of last-running process

– Conditionally
• Select new process from those that are ready

• Restore context of selected process

– OS returns control to a process from interrupt/trap

Why shouldn’t processes control
context switching?

A. It would cause too much overhead.

B. They could refuse to give up the CPU.

C. They don’t have enough information about
other processes.

D. Some other reason(s).

Time Sharing / Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

• Policy: CPU scheduling

The CPU Scheduling Problem

• Given multiple processes, but only one CPU

• How much CPU time does each process get?

• Which process do we run next?

• Possibilities

– Keep CPU till done

– Each process uses CPU a bit and passes it on

– Each process gets proportional to what they pay

Which CPU scheduling policy is the best?

A. Processes keep CPU until done (maximize
throughput)

B. Processes use a fraction of CPU and pass it on
(ensure fairness)

C. Processes receive CPU in proportion to their
priority or what they pay (prioritize importance)

D. Other (explain)

There is No Single Best Policy

• Depends on the goals of the system

• Different for…

– Your personal computer

– Large time-shared (super) computer

– Computer controlling a nuclear power plant

• Often have multiple (conflicting) goals

Common Policies

• Details beyond scope of this course (Take OS)

• Different classes of processes

– Those blessed by administrator (high/low priority)

– Everything else

Common Policies

• Special class gets special treatment (varies)

• Everything else: roughly equal time quantum
– “Round robin”
– Give priority boost to processes that frequently

perform I/O
– Why?

• “I/O bound” processes frequently block.

– If we want them to get equal CPU time, we need to
give them the CPU more often.

Linux’s Policy
(You’re not responsible for this.)

• Special “real time” process classes (high prio)

• Other processes:
– Keep red-black BST of process, organized by how

much CPU time they’ve received.
– Pick the ready with process that has run for the

shortest time thus far.
– Run it, update it’s CPU usage time, add to tree.

• Interactive processes: Usually blocked, low total
run time, high priority.

Managing Processes

• Processes created by calling fork()
– “Spawning” a new process

• “Parent” process spawns “Child” process
– Brutal relationship involving “zombies”, “killing”

and “reaping”. (I’m not making this up!)

• Processes interact with one another by
sending signals.

Managing Processes

• Given a process, how do we make it execute
the program we want?

• Model: fork() a new process, execute program

fork()

• System call (function provided by OS kernel)

• Creates a duplicate of the requesting process

– Process is cloning itself:

• CPU context

• Memory “address space”

OS

Stack

Text
Data

Heap

OS

Stack

Text
Data

Heap

OS

Stack

Text
Data

Heap

(Almost) identical clones

fork() return value

• The two processes are identical in every way,
except for the return value of fork().

– The child gets a return value of 0.

– The parent gets a return value of child’s PID.

pid_t pid = fork(); // both continue after call

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Which process executes next? Child? Parent? Some other process?

Up to OS to decide. No guarantees. Don’t rely on particular behavior!

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {

 printf(“hello”);

}

fork();

printf(“hello”);

A.6
B.8
C.12
D.16
E.18

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {

 printf(“hello”);

}

fork();

printf(“hello”);

Common fork() usage: Shell

• A “shell” is the program controlling your
terminal (e.g., bash).

• It fork()’s to create new processes, but we
don’t want a clone (another shell).

• We want the child to execute some other
program: exec() family of functions.

exec()

• Family of functions (execl, execlp, execv, …).

• Replace the current process with a new one.

• Loads program from disk:

– Old process is overwritten in memory.

– Does not return unless error.

Common fork() usage: Shell

1.fork()child process.

2.exec()desired program to replace child’s
address space.

2.wait()for child process to terminate.

3. repeat…

The parent and child each do
something different next.

Common fork() usage: Shell

1.fork()child process.

Shell

fork()

Shell
(p)

Shell
(c)

Common fork() usage: Shell

2. parent: wait()for child to finish

Shell

fork()

Shell
(p)

Shell
(c)

wait()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
(c)

wait() exec()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminates

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminates Shell
(p)

Original parent
shell resumes

Process Termination

• When does a process die?
– It calls exit(int status);
– It returns (an int) from main
– It receives a termination signal (from the OS or another

process)

• Key observation: the dying process produces status
information.

• Who looks at this?
• The parent process!

Reaping Children
(Bet you didn’t expect to see THAT title on a slide when you signed up for CS 31?)

• wait(): parents reap their dead children
– Given info about why child died, exit status, etc.

• Two variants:
– wait(): wait for and reap next child to exit

– waitpid(): wait for and reap specific child

• This is how the shell determines whether or
not the program you executed succeeded.

Common fork() usage: Shell

1.fork()child process.

2.exec()desired program to replace child’s
address space.

3.wait()for child process to terminate.
– Check child’s result, notify user of errors.

4. repeat…

What should happen if dead child
processes are never reaped? (That is, the
parent has not wait()ed on them?)

A. The OS should remove them from the process
table (process control block / PCB).

B. The OS should leave them in the process table
(process control block / PCB).

“Zombie” Processes

• Zombie: A process that has terminated but not
been reaped by parent. (AKA defunct process)

• Does not respond to signals (can’t be killed)

• OS keeps their entry in process table:

– Parent may still reap them, want to know status

– Don’t want to re-use the process ID yet

Basically, they’re kept around for bookkeeping purposes, but that’s much less exciting...

Signals

• How does a parent process know that a child has
exited (and that it needs to call wait)?

• Signals: inter-process notification mechanism
– Info that a process (or OS) can send to a process.

• Please terminate yourself (SIGTERM)

• Stop NOW (SIGKILL)

• Your child has exited (SIGCHLD)

• You’ve accessed an invalid memory address (SIGSEGV)

• Many more (SIGWINCH, SIGUSR1, SIGPIPE, …)

Signal Handlers

• By default, processes react to signals according to the
signal type:
– SIGKILL, SIGSEGV, (others): process terminates
– SIGCHLD, SIGUSR1: process ignores signal

• You can define “signal handler” functions that execute
upon receiving a signal.
– Drop what program was doing, execute handler, go back to

what it was doing.
– Example: got a SIGCHLD? Enter handler, call wait()
– Example: got a SIGUSR1? Reopen log files.

• Some signals (e.g., SIGKILL) cannot be handled.

Summary

• Processes cycled off and on CPU rapidly
– Mechanism: context switch
– Policy: CPU scheduling

• Processes created by fork()ing

• Other functions to manage processes:
– exec(): replace address space with new program
– exit(): terminate process
– wait(): reap child process, get status info

• Signals one mechanism to notify a process of
something

