
CS 31: Intro to Systems
Digital Logic

Kevin Webb

Swarthmore College

February 2, 2016

Reading Quiz

Today

• Hardware basics

• Machine memory models

• Digital signals

• Logic gates

• Manipulating/Representing values in hardware

• Adders

• Storage & memory (latches)

Circuits: Borrow some
paper if you need to!

Hardware Models (1940’s)

• Harvard Architecture:

• Von Neumann Architecture:

Program
Memory

Input/Output

Data
Memory

CPU
(Control and
Arithmetic)

CPU
(Control and
Arithmetic)

Input/Output

Program
and
Data

Memory

Von Neumann Architecture Model

• Computer is a generic computing machine:
• Based on Alan Turing’s Universal Turing Machine

• Stored program model: computer stores program rather
than encoding it (feed in data and instructions)

• No distinction between data and instructions memory

• 5 parts connected by buses (wires):
• Memory, Control, Processing, Input, Output

Memory Cntrl Unit | Processing Unit

cntrl bus
addr bus

data bus

Input/Output

“Register”

Small, very vast storage space.
Fixed size (e.g., 32 bits).

Stores what is currently being worked on.

Memory: data and instructions are stored in memory
 memory is addressable: addr 0, 1, 2, …

• Memory Address Register: address to read/write

• Memory Data Register: value to read/write

Processing Unit: executes instrs selected by cntrl unit
• ALU (artithmetic logic unit): simmple functional units: ADD, SUB…

• Registers: temporary storage directly accessible by instructions

Control unit: determines order in which instrs execute
• PC: program counter: address of next instruction

• IR: holds current instruction

• clock based instr by instr control: clock signal+IR trigger state changes

Input/Output: keyboard (can trigger actions), terminal, disk, …

Memory

MAR MDR

cntrl bus
addr bus

data bus

Input/Output

CPU:
Cntrl Unit ALU
 PC IR registers

Digital Computers

• All input is discrete (driven by periodic clock)

• All signals are binary (0: no voltage, 1: voltage)

 data, instructions, control signals, arithmetic, clock

• To run program, need different types of circuits

CPU
ALU, Cntrl,

Storage

RAM
Cntrl & Storage

bus

Circuits to
store program
data and instructions
and support reading
and writing
addressable storage
locations

Circuits to
execute
program
instructions
that act on
program data

Goal: Build a CPU (model)

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers, Also: main memory (RAM)

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Complex devices
Compute & I/O

Hardware Circuits

Logic Gates

Transistors

Here be dragons.
(Electrical Engineering)

…
(Physics)

Logic Gates
Input: Boolean value(s) (high and low voltages for 1 and 0)
Output: Boolean value result of boolean function
 Always present, but may change when input changes

 A B A & B A | B ~A

 0 0 0 0 1

 0 1 0 1 1

 1 0 0 1 0

 1 1 1 1 0

a

b
out

out = a & b

And

a

b
out

out = a | b

Or

a out

out = ~a

Not

More Logic Gates

 A B A NAND B A NOR B

 0 0 1 1

 0 1 1 0

 1 0 1 0

 1 1 0 0

a

b
out

out = ~(a | b)

NOR

a

b
out

out = ~(a & b)

NAND

Note the circle on the
output.
This means “negate it.”

Combinational Logic Circuits

• Build up higher level processor functionality
from basic gates

Acyclic Network of Gates

Inputs Outputs

Outputs are boolean functions of inputs

Outputs continuously respond to changes to inputs

What does this circuit output?
And Or Not

X

Y
Output

X Y OutA OutB OutC OutD OutE

0 0 0 1 0 1 0

0 1 0 1 0 0 1

1 0 1 0 1 1 1

1 1 0 0 1 1 0

Clicker Choices

What can we do with these?

• Build-up XOR from basic gates (AND, OR, NOT)

 A B A ^ B

 0 0 0

 0 1 1

 1 0 1

 1 1 0

Q: When is A^B ==1?

Which of these is an XOR circuit?

Draw an XOR circuit using AND, OR, and
NOT gates.

I’ll show you the clicker options after you’ve
had some time.

And Or Not

Which of these is an XOR circuit?

A

B

A

B

A

B

A

B

E: None of these are XOR.

A: B:

C: D:

XOR Circuit: Abstraction

 A^B == (~A & B) | (A & ~B)

A

B out = A^B

A:0 B:0 A^B:

A:0 B:1 A^B:

A:1 B:0 A^B:

A:1 B:1 A^B:

=

Digital Circuits - Building a CPU
Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

 HW Circuits

Logic Gates

Transistor

Digital Circuits - Building a CPU
Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

Start with ALU components (e.g., adder)

Combine into ALU!

HW Circuits

Logic Gates

Transistor

Arithmetic Circuits

• 1 bit adder: A+B

• Two outputs:

1. Obvious one: the sum

2. Other one: ??

 A B Sum(A+B) Cout

 0 0

 0 1

 1 0

 1 1

Which of these circuits is a one-bit adder?
 A B Sum(A+B) Cout

 0 0 0 0

 0 1 1 0

 1 0 1 0

 1 1 0 1

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

More than one bit?

• When adding, sometimes have carry in too

 0011010

 + 0001111

One-bit (full) adder

Need to include:

Carry-in & Carry-out

 A B Cin Sum Cout

 0 0 0 0 0

 0 1 0 1 0

 1 0 0 1 0

 1 1 0 0 1

 0 0 1 1 0

 0 1 1 0 1

 1 0 1 0 1

 1 1 1 1 1

= 1-bit
adder

Cin

Cout

A

B Sum

Multi-bit Adder (Ripple-carry Adder)

1-bit
adder

0

Cout

A0

B0 Sum0

1-bit
adder

Cout

A1

B1 Sum1

1-bit
adder

Cout

A3

B3 Sum3

1-bit
adder

Cout

A2

B2 Sum2

…

1-bit
adder

Cout

AN-1

BN-1 SumN-1

Three-bit Adder (Ripple-carry Adder)

1-bit
adder

0

0

1

1-bit
adder

1

1

1-bit
adder

0

0

010 (2)
+ 011 (3) = 3-bit

adder

A0

A1
A2

B0

B1

B2

Carry out

Carry in

Sum0

Sum1

Sum2

Arithmetic Logic Unit (ALU)

• One component that knows how to manipulate
bits in multiple ways
• Addition

• Subtraction

• Multiplication / Division

• Bitwise AND, OR, NOT, etc.

• Built by combining components
• Take advantage of sharing HW when possible

(e.g., subtraction using adder)

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Circuit that takes
in Sum0-2 / Or0-2

and only outputs
one of them,

based on control
signal.

Which of these circuits lets us select
between two inputs?

Control
Signal

Input 1

Input 2

Control
Signal

Input 1

Input 2

Control
Signal

Input 1

Input 2

A: B:

C:

Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

• Control signal s, chooses the input for output

• When s is 1: choose a, when s is 0: choose b

out
b

s

a out = (s & a)|(~s &b)

1 bit 2-way MUX

N-Way Multiplexor
Choose one of N inputs, need log2 N select bits

D0

D3

Out

s0

s1

MUX4
D2

D1

s1 s0 choose

0 0 D0

0 1 D1

1 0 D2

1 1 D3

4-Way Multiplexor

 S Input to
 choose D0

D0

s1
s0

.

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Multiplexer!

ALU: Arithmetic Logic Unit

• Arithmetic and logic circuits: ADD, SUB, NOT, …
• Control circuits: use op bits to select output
• Circuits around ALU:

• Select input values X and Y from instruction or register
• Select op bits from instruction to feed into ALU
• Feed output somewhere

OF

A
L
U

Y

X op Y

op bits: selects which op to output

Output flags: set as a
side effect of op
(e.g., overflow detected)

 ADD 2 3

X

CPU
Instruction:

Digital Circuits - Building a CPU
Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

Circuits are built from Logic Gates which are built from
transistors

HW Circuits

Logic Gates

Transistor

Digital Circuits - Building a CPU
Three main classifications of HW circuits:

2. Storage: to store binary values

(ex) Register File: set of CPU registers

Give the CPU a “scratch space” to perform
calculations and keep track of the state its in.

HW Circuits

Logic Gates

Transistor

CPU so far…

• We can perform arithmetic!

• Storage questions:

• Where to the ALU input values come from?

• Where do we store the result?

• What does this “register” thing mean?

A
L
U

?

?

?

Memory Circuit Goals: Starting Small

• Store a 0 or 1

• Retrieve the 0 or 1 value on demand (read)

• Set the 0 or 1 value on demand (write)

R-S Latch: Stores Value Q
When R an S are both 1: Store a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

Q (value stored)

~Q

S

R

R-S Latch

a

b

Gated D Latch
Controls S-R latch writing, ensures S & R never both 0

Q (value stored)

~Q

S

R

R-S Latch
D

WE

D: into top NAND, ~D into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Latches used in registers (up next) and SRAM (caches, later)
 Fast, not very dense, expensive

DRAM: capacitor-based:

Registers

• Fixed-size storage (8-bit, 32-bit, etc.)

• Gated D latch lets us store one bit

• Connect N of them to the same write-enable wire!

Write-enable:

N-bit input
wires (bus):

N-bit Register
Bit 0

Bit 1

Bit N-1

…

“Register file”

• A set of registers for the CPU to store temporary
values.

• This is (finally)
something you
will interact with!

• Instructions of form:
• “add R1 + R2, store result in R3”

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Memory Circuit Summary

• Lots of abstraction going on here!
• Gates hide the details of transistors.

• Build R-S Latches out of gates to store one bit.

• Combining multiple latches gives us N-bit register.

• Grouping N-bit registers gives us register file.

• Register file’s simple interface:
• Read Rx’s value, use for calculation

• Write Ry’s value to store result

Digital Circuits - Building a CPU
Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

Circuits are built from Logic Gates which are built from
transistors

HW Circuits

Logic Gates

Transistor

Digital Circuits - Building a CPU
Three main classifications of HW circuits:

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

Keep track of where we are in the program.

Execute instruction, move to next.

HW Circuits

Logic Gates

Transistor

CPU so far…

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.

Remaining questions:
 Which register(s) do we use as input to ALU?
 Which operation should the ALU perform?
 To which register should we store the result? All this info comes from

our program:
a series of instructions.

Recall: Von Neumann Model

CPU
(Control and
Arithmetic)

Input/Output

Program
and
Data

Memory

We’re building this.
Our program (instructions) live
here. We’ll assume for now that
we can access it like an array.

0:

1:

2:

3:

4:

…

N-1:

Mem Addresses
(buckets)

CPU Game Plan

• Fetch instruction from memory

• Decode what the instruction is telling us to do
• Tell the ALU what it should be doing

• Find the correct operands

• Execute the instruction (arithmetic, etc.)

• Store the result

Program State

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Let’s add two more special registers (not in register file) to keep track of program.

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Fetching instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

OP Code tells
ALU which
operation to
perform.

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Register ID #’s
specify input
arguments.

Executing instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

Storing results.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

We’ve just computed something. Where do we put it?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result location
specifies
where to store
ALU output.

Why do we need a program counter?
Can’t we just start at 0 and count up one at
a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward
by more than one.

C. Some instructions might adjust the PC
backwards.

D. We need the PC for some other reason(s).

Storing results.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result might be:
 Memory
 Register
 PC

Recap CPU Model

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Four stages: fetch instruction, decode instruction, execute, store result

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Fetching instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

OP Code tells
ALU which
operation to
perform.

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Register ID #’s
specify input
arguments.

Executing instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

Storing results.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: Store result in register, memory, PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result might be:
 Memory
 Register
 PC

Clocking

• Need to periodically transition from one
instruction to the next.

• It takes time to fetch from memory, for signal
to propagate through wires, etc.

• Too fast: don’t fully compute result

• Too slow: waste time

Clock Driven System
• Everything in is driven by a discrete clock

• clock: an oscillator circuit, generates hi low pulse

• clock cycle: one hi-low pair

• Clock determines how fast system runs

• Processor can only do one thing per clock cycle
– Usually just one part of executing an instruction

• 1GHz processor:
1 billion cycles/second 1 cycle every nanosecond

Clock

1 cycle

1 0 1 0 1 0 1 0 1 0

Clock and Circuits

Clock Edges Triggers events

• Circuits have continuous values

• Rising Edge: trigger new input values

• Falling Edge: consistent output ready to read

• Between rising and falling edge can have
inconsistent state as new input values flow
through circuit

^ new

 input

^ output

 ready

^ new

 input

Clock:

Cycle Time: Laundry Analogy

• Discrete stages: fetch, decode, execute, store

• Analogy (laundry): washer, dryer, folding, dresser

W Dy F Dr

4 Hours

You have big problems if you have
millions of loads of laundry to do….

Laundry

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

4-hour cycle time.

Finishes a laundry load every cycle.

(6 laundry loads per day)

Pipelining (Laundry)

W

Dy W

F Dy W

Dr F Dy W

Dr F Dy W

1 Hour

1st hour:

2nd hour:

3rd hour:

4th hour:

5th hour:

Steady state: One load finishes every hour!
(Not every four hours like before.)

Pipelining (CPU)

F

D F

E D F

S E D F

S E D F

1 Nanosecond

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!
(Clock rate can be faster.)

CPU Stages: fetch, decode,
 execute, store results

Pipelining

(For more details about this and the other things
we talked about here, take architecture.)

Up next

• Talking to the CPU: Assembly language

