
CS 31: Intro to Systems
Binary Representation

Kevin Webb

Swarthmore College

January 21, 2016

Reading Quiz

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Today

• Number systems and conversion

• Data types and storage:

• Sizes

• Representation

• Signedness

You can view binary file contents
xxd (or hexdump –C) to view binary file values:

xxd a.out # a binary executable file

Address: value of the next 16 bytes in memory

0000000: 7f45 4c46 0201 0100 0000 0000 0000 0000

0000010: 0200 3e00 0100 0000 3007 4000 0000 0000

0000020: 4000 0000 0000 0000 084d 0000 0000 0000

 …

 (these weird numbers (f,c,e, …), are hexidecimal digits)

xxd myprog.c # binary ascii encoding of C source:

0000000: 2369 6e63 6c75 6465 3c73 7464 696f 2e68

 #i nc lu de <s td io .h

0000010: 3e0a 696e 7420 6d61 696e 2829 207b 0a20

 >\n in t ma in () { \n

…

Data Storage

• Lots of technologies out there:
• Magnetic (hard drive, floppy disk)
• Optical (CD / DVD / Blu-Ray)
• Electronic (RAM, registers, …)

• Focus on electronic for now
• We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
• Voltage present
• Voltage absent

Bits and Bytes

• Bit: a 0 or 1 value (binary)
• HW represents as two different voltages

• 1: the presence of voltage (high voltage)

• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …

(address) [0] [1] [2] …

• Other names:
• 4 bits:

• “Word”: Depends on system, often 4 bytes

Nibble

How many unique values can we
represent with 9 bits?
• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

C types and their (typical!) sizes
• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

unsigned long v1;

short s1;

long long ll;

printf(“%lu %lu %lu\n”, sizeof(v1), sizeof(s1),
 sizeof(ll)); // prints out number of bytes

How do we use this storage space (bits) to represent a value?

Let’s start with what we know…

• Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

 64025

Digit #0 Digit #4

What is the significance of the Nth digit
number in this number system? What does
it contribute to the overall value?
 64025

A. dN * 1
B. dN * 10
C. dN * 10N

D. dN * N10

E. dN * 10dN

Digit #0
d0

Digit #4
d4

Consider the meaning of d3 (the value 4) above.
What is it contributing to the total value?

Positional Notation

• The meaning of a digit depends on its position
in a number.

• A number, written as the sequence of digits
dndn-1…d2d1d0 in base b represents the value

dn * bn + dn-1 * bn-1 + ... + d2 * b2 + d1 * b1 + d0 * b0

Decimal: Base 10

• Used by humans

• A number, written as the sequence of digits dndn-

1…d2d1d0 where d is in {0,1,2,3,4,5,6,7,8,9},
represents the value
dn * 10n + dn-1 * 10n-1 + ... + d2 * 102 + d1 * 101 + d0 * 100

64025 =

6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Binary: Base 2

• Used by computers

• A number, written as the sequence of digits
dndn-1…d2d1d0 where d is in {0,1}, represents
the value

dn * 2n + dn-1 * 2n-1 + ... + d2 * 22 + d1 * 21 + d0 * 20

What is the value of 110101 in decimal?

• A number, written as the sequence of digits dndn-

1…d2d1d0 where d is in {0,1}, represents the value

dn * 2n + dn-1 * 2n-1 + ... + d2 * 22 + d1 * 21 + d0 * 20

A. 26

B. 53

C. 61

D. 106

E. 128

Other (common) number systems.

• Base 10: decimal

• Base 2: binary

• Base 16: hexadecimal (memory addresses)

• Base 8: octal

• Base 64 (Commonly used on the Internet, e.g.
email attachments).

Hexadecimal: Base 16

• Indicated by prefacing number with 0x

• A number, written as the sequence of digits
dndn-1…d2d1d0 where d is in
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents
the value

dn * 16n + dn-1 * 16n-1 + ... + d2 * 162 + d1 * 161 + d0 * 160

What is the value of 0x1B7 in decimal?

A. 397

B. 409

C. 419

D. 437

E. 439

162 = 256

Hexadecimal: Base 16

• Indicated by prefacing number with 0x
• Like binary, base is power of 2

• Fewer digits to represent same value

• Each digit is a “nibble”, or half a byte

• A number, written as the sequence of digits dndn-

1…d2d1d0 where d is in
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the
value
dn * 16n + dn-1 * 16n-1 + ... + d2 * 162 + d1 * 161 + d0 * 160

Each hex digit is a “nibble”

Hex digit:16 values, 24 = 16 -> 4 bits / digit

0x 1 B 7
Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
 1 B 7

Converting Decimal -> Binary

• Two methods:

• division by two remainder

• powers of two and subtraction

 Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

 idea: D = b example: D = 105 a0 = 1

 D = b D = 52 a1 = 0

 D/2 = b/2 D = 26 a2 = 0

 D/2 = b/2 D = 13 a3 = 1

 D/2 = b/2 D = 6 a4 = 0

 D/2 = b/2 D = 3 a5 = 1

 0 = 0 D = 1 a6 = 1

 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

 Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

 idea: D = b example: D = 105 a0 = 1

 D/2 = b/2 D = 52 a1 = 0

 D/2 = b/2 D = 26 a2 = 0

 D/2 = b/2 D = 13 a3 = 1

 D/2 = b/2 D = 6 a4 = 0

 D/2 = b/2 D = 3 a5 = 1

 0 = 0 D = 1 a6 = 1

 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

 Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

 idea: D = b example: D = 105 a0 = 1

 D/2 = b/2 D = 52 a1 = 0

 D/2 = b/2 D = 26 a2 = 0

 D/2 = b/2 D = 13 a3 = 1

 D/2 = b/2 D = 6 a4 = 0

 D/2 = b/2 D = 3 a5 = 1

 0 = 0 D = 1 a6 = 1

 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 2
• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128

• To convert 105:
• Find largest power of two that’s less than 105 (64)

• Subtract 64 (105 – 64 = 41), put a 1 in d6

• Subtract 32 (41 – 32 = 9), put a 1 in d5

• Skip 16, it’s larger than 9, put a 0 in d4

• Subtract 8 (9 – 8 = 1), put a 1 in d3

• Skip 4 and 2, put a 0 in d2 and d1

• Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __

What is the value of 357 in binary?

A. 101100011

B. 101100101

C. 101101001

D. 101110101

E. 110100101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64, 27 = 128, 28 = 256

So far: Unsigned Integers

• With N bits, can represent values: 0 to 2n-1

• We can always add 0’s to the front of a number without
changing it:

10110= 010110 = 00010110 = 0000010110

• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

Representing Signed Values

• One option (used for floats, NOT integers)

• Let the first bit represent the sign

• 0 means positive

• 1 means negative

• For example:

• 0101 -> 5

• 1101 -> -5

• Problem with this scheme?

Floating Point Representation
 1 bit for sign sign | exponent | fraction |
 8 bits for exponent
 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010

 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this

Up Next: Binary Arithmetic

