
CS 31: Intro to Systems C Programming
L22-23: Synchronization and Race Conditions

Vasanta Chaganti & Kevin Webb
Swarthmore College
Nov 30 – Dec 5, 2023

Reading Quiz

OS Big Picture Goals

• OS is a layer of code between user programs and hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?

Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource allocation and/or sharing

3. Hardware gatekeeping and protection

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory

• Into desirable conveniences: illusions
– Simple, easy-to-use resources
– Multiple/unlimited number of processors
– Large/unlimited amount of memory

Making Programs Run Faster

• In the “old days” (1980’s - 2005):
– Algorithm too slow? Wait for HW to catch up.

• Modern CPUs exploit parallelism for speed:
– Executes multiple instructions at once
– Reorders instructions on the fly

• Today, can’t make a single core go much faster.
– Limits on clock speed, heat, energy consumption

• Use extra transistors to put multiple CPU cores on the chip.

• Programmer’s job to speed-up computation
– Humans bad at thinking in parallel

From Herb Sutter,

Dr. Dobbs Journal

Processor
Design
Trends

Transistors (*10^3)

Clock Speed
(MHZ)

Power (W)

ILP (IPC)
Instruction
Level
Parallelism

Parallel Abstraction

• To speed up a job, must divide it across multiple cores.

• A process contains both execution information and memory/resources.

• What if we want to separate the execution information to give us
parallelism in our programs?

Which components of a process might we replicate
to take advantage of multiple CPU cores?

A. The entire address space (memory – not duplicated)

B. Parts of the address space (memory - stack)

C. OS resources (open files, etc – not duplicated.)

D. Execution state (PC, registers, etc.)

E. More than one of these (which?)

Which components of a process might we replicate
to take advantage of multiple CPU cores?

A. The entire address space (memory – not duplicated)

B. Parts of the address space (memory - stack)

C. OS resources (open files, etc – not duplicated.)

D. Execution state (PC, registers, etc.)

E. More than one of these (which?)

Don’t duplicate shared resources,
duplicate resources where we need a private copy per thread:
like execution state, and stack

Threads

• Modern OSes separate the concepts of processes and threads.
– The process defines the address space and general process attributes (e.g., open

files)
– The thread defines a sequential execution stream within a process (PC, SP,

registers)

• A thread is bound to a single process
– Processes, however, can have multiple threads
– Each process has at least one thread (e.g. main)

Processes versus Threads

• A process defines the address space, text, resources, etc.,

• A thread defines a single sequential execution stream within a
process (PC, stack, registers).

• Threads extract the thread of control information from the
process

• Threads are bound to a single process.

• Each process may have multiple threads of control within it.
– The address space of a process is shared among all its threads

– No system calls are required to cooperate among threads

Threads

This is the picture we’ve
been using all along:

A process with a single
thread, which has execution
state (registers) and a stack.

Text

Data

Stack

OS

Heap

Thread 1 PC1

SP1

Threads

Thread 2

PC2

SP2

We can add a thread to the
process. New threads share all
memory (VAS) with other
threads.

New thread gets private
registers, local stack.

Text

Data

OS

Heap

Thread 1 PC1

SP1

Stack 1

Stack 2

Threads

Thread 3

PC3

SP3

A third thread added.

Note: they’re all executing the
same program (shared
instructions in text), though
they may be at different points
in the code.

Thread 2

PC2

SP2

Text

Data

OS

Heap

Thread 1 PC1

SP1

Stack 1

Stack 2

Stack 3

Why Use Threads?

• Separating threads and processes makes it easier to support
parallel applications:
– Creating multiple paths of execution does not require creating new

processes (less state to store, initialize – Light Weight Process)
– Low-overhead sharing between threads in same process (threads

share page tables, access same memory)

• Concurrency (multithreading) can be very useful

Concurrency?

• Several computations or threads of control are executing
simultaneously, and potentially interacting with each other.

• We can multitask! Why does that help?
– Taking advantage of multiple CPUs / cores
– Overlapping I/O with computation
– Improving program structure

Recall: Processes

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process n

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

Scheduling Threads

• We have basically two options
1. Kernel explicitly selects among threads in a process
2. Hide threads from the kernel, and have a user-level scheduler inside each multi-

threaded process

• Why do we care?
– Think about the overhead of switching between threads
– Who decides which thread in a process should go first?
– What about blocking system calls?

User-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack Stack Stack

Thread C/S + Sched Thread C/S + Sched Thread C/S + Sched

System Management

Process
Scheduling

Process
Context

Switching

Library
divides
stack region

Threads are
invisible to
the kernel

Kernel-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack 3
Stack 2
Stack 1

Stack 2

Stack 1
Stack 1

System Management

Thread +
Process

Scheduling

Thread
Context

Switching

Kernel Context
switching over
threads

Each process
has explicitly
mapped
regions for
stacks

If you call thread_create() on a modern OS
(Linux/Mac/Windows), which type of thread would you
expect to receive? (Why? Which would you pick?)

A. Kernel threads

B. User threads

C. Some other sort of threads

If you call thread_create() on a modern OS
(Linux/Mac/Windows), which type of thread would you
expect to receive? (Why? Which would you pick?)

A. Kernel threads

B. User threads

C. Some other sort of threads

Kernel vs. User Threads

• Kernel-level threads
– Integrated with OS (informed scheduling)
– Slower to create, manipulate, synchronize

• Requires getting the OS involved, which means changing context (relatively
expensive)

• User-level threads
– Faster to create, manipulate, synchronize
– Not integrated with OS (uninformed scheduling)
• If one thread makes a syscall, all of them get blocked because the

OS doesn’t distinguish.

Threads & Sharing

• Code (text) shared by all threads in process
• Global variables and static objects are shared
– Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared
– Allocated from heap with malloc/free or new/delete

• Local variables should not be shared
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on another thread’s stack!!

Threads & Sharing

• Local variables should not be shared
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Z

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x
to access Z.Function B returns…

Threads & Sharing

• Local variables should not be shared
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on another thread’s stack

…

function C

function D

…

function A

function C

Shared Heap
int *x;

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x
to access Z.Function B returns…

?

Threads & Sharing

• Local variables should not be shared
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x
to access Z.

Z

Shared data on heap!

Thread-level Parallelism

• Speed up application by assigning portions to
CPUs/cores that process in parallel

• Requires:
– partitioning responsibilities (e.g., parallel algorithm)
– managing their interaction

• Example: game of life (next lab)

One core: Three cores:

If one CPU core can run a program at a rate of X, how quickly
will the program run on two cores? Why?

A. Slower than one core (<X)
B. The same speed (X)
C. Faster than one core, but not double (X-2X)
D. Twice as fast (2X)
E. More than twice as fast(>2X)

If one CPU core can run a program at a rate of X, how quickly
will the program run on two cores? Why?

A. Slower than one core (<X) (if we try to parallelize serial
applications!)

B. The same speed (X) (some applications are not parallelizable)
C. Faster than one core, but not double (X-2X): most of the time:

(some communication overhead to coordinate/synchronization of
the threads)

D. Twice as fast (2X)(class of problems called embarrassingly parallel
programs. E.g. protein folding, SETI)

E. More than twice as fast(>2X) (rare: possible if you have more CPU
+ more memory)

Parallel Speedup

• Performance benefit of parallel threads depends on many factors:
– algorithm divisibility
– communication overhead
– memory hierarchy and locality
– implementation quality

• For most programs, more threads means more communication,
diminishing returns.

Summary

• Physical limits to how much faster we can make a
single core run.
– Use transistors to provide more cores.
– Parallelize applications to take advantage.

• OS abstraction: thread
– Shares most of the address space with other threads in

same process
– Gets private execution context (registers) + stack

• Coordinating threads is challenging!

Threads

Thread 1
PC1

SP1

Thread 2

Thread 3

PC2

SP2PC3

SP3

Process 1

Text

Data

Stack 3

OS

Heap

Stack 2

Stack 1

They’re all
executing the same
program (shared
instructions in text),
though they may be
at different points
in the code.

Kernel-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack 3
Stack 2
Stack 1

Stack 2

Stack 1
Stack 1

System Management

Thread +
Process

Scheduling

Thread
Context

Switching

Kernel Context
switching over
threads

Each process
has explicitly
mapped
regions for
stacks

Synchronization

• Synchronize: to (arrange events to) happen such that two events do not
overwrite each other’s work.

• Thread synchronization
– When one thread has to wait for another
– Events in threads that occur “at the same time”

• Uses of synchronization
– Prevent race conditions
– Wait for resources to become available (only one thread has access at any

time - deadlocks)

Synchronization:
Too Much Milk (TMM)

Lecture 8 – Slide-41

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

How many cartons of milk can we have in this scenario? (Can
we ensure this somehow?)

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

A. One carton
(you)

B. Two cartons
C. No cartons
D. Something

else

Synchronization:
Too Much Milk (TMM): One possible scenario

Lecture 8 – Slide-43

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

3.00 Arrive home

3.40 Arrive home, put milk in
fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Synchronization:

Lecture 8 – Slide-44

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

3.00 Arrive home

3.40 Arrive home, put milk in
fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Threads get scheduled in an arbitrary manner:
bad things may happen: ...or nothing may happen

Synchronization Example

• Coordination required:
– Which thread goes first?
– Threads in different regions must work together to

compute new value for boundary cells.
– Threads might not run at the same speed (depends on

the OS scheduler). Can’t let one region get too far
ahead.

– Context switches can happen at any time!

One core: Three cores:

Thread Ordering
(Why threads require care. Humans aren’t good at reasoning about this.)

• As a programmer you have no idea when threads will run. The OS
schedules them, and the schedule will vary across runs.

• It might decide to context switch from one thread to another at any
time.

• Your code must be prepared for this!
– Ask yourself: “Would something bad happen if we context switched here?”

• hard to debug this problem if it is not reproducible

Example: The Credit/Debit Problem

• Say you have $1000 in your bank account
– You deposit $100
– You also withdraw $100

• How much should be in your account?

• What if your deposit and withdrawal occur at the same time, at
different ATMs?

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
 int b;

 b = ReadBalance ();
 b = b + a;
 WriteBalance (b);

 PrintReceipt (b);
}

Thread T1

Debit (int a) {
 int b;

 b = ReadBalance ();
 b = b - a;
 WriteBalance (b);

 PrintReceipt (b);
}

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
 int b;

 b = ReadBalance ();
 b = b + a;
 WriteBalance (b);

 PrintReceipt (b);
}

Thread T1

Debit (int a) {
 int b;

 b = ReadBalance ();
 b = b - a;
 WriteBalance (b);

 PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
 int b;

 b = ReadBalance ();
 b = b + a;
 WriteBalance (b);

 PrintReceipt (b);
}

Thread T1

Debit (int a) {
 int b;

 b = ReadBalance ();
 b = b - a;
 WriteBalance (b);

 PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Switch to T1
Read $1000 into b
Debit by $100
Write $900

CONTEXT SWITCH

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
 int b;

 b = ReadBalance ();
 b = b + a;
 WriteBalance (b);

 PrintReceipt (b);
}

Thread T1

Debit (int a) {
 int b;

 b = ReadBalance ();
 b = b - a;
 WriteBalance (b);

 PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Switch to T1
Read $1000 into b
Debit by $100
Write $900

Switch back to T0
Read $1000 into b
Credit $100
Write $1100

Bank gave you $100!

What went wrong?

“Critical Section”

Thread T0

Credit (int a) {
 int b;

 b = ReadBalance ();
 b = b + a;
 WriteBalance (b);

 PrintReceipt (b);
}

Thread T1

Debit (int a) {
 int b;

 b = ReadBalance ();
 b = b - a;
 WriteBalance (b);

 PrintReceipt (b);
}

Bank gave you $100!

What went wrong?

Badness if
context
switch here!

Danger Will Robinson!

To Avoid Race Conditions

1. Identify critical sections

2. Use synchronization to enforce mutual exclusion
– Only one thread active in a critical section

Thread 0

- Critical -
- Section -

Thread 1

- Critical -
- Section -

Critical Section and Atomicity

• Sections of code executed by multiple threads
– Access shared variables, often making local copy
– Places where order of execution or thread interleaving will affect the

outcome
– Follows: read + modify + write of shared variable

• Must run atomically with respect to each other
– Atomicity: runs as an entire instruction or not at all. Cannot be divided into

smaller parts.

Which code region is a critical section?
Thread A

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 a += 1

 return a;
}

Thread B

 s = 40;

shared
memory

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 a += 1

 return a;
}

A
C

B

D
E

Which code region is a critical section?

Thread A Thread B

shared
memory

D

read + modify + write of shared variable

Large enough for correctness + Small enough to minimize slow down

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 a += 1

 return a;
}

 s = 40;

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 a += 1

 return a;
}

Which values might the shared s variable hold after both
threads finish?

shared
memory

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 a += 1

 return a;
}

 s = 40;

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 a += 1

 return a;
}

Thread A Thread B

If A runs first

(s = 40)
 s = 50

shared
memory

Thread A Thread B

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 a += 1

 return a;
}

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 a += 1

 return a;
}

B runs after A Completes

(s = 50)
 s = 30;

shared
memory

Thread A Thread B

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 a += 1

 return a;
}

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 a += 1

 return a;
}

What about interleaving?

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 return a;
}

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 return a;
}

 s = 40;

shared
memory

Thread A Thread B

One of the threads will overwrite the other’s changes.

Is there a race condition?
Suppose count is a global variable, multiple threads increment it:
count++;

A. Yes, there’s a race condition (count++ is a critical section).
B. No, there’s no race condition (count++ is not a critical section).
C. Cannot be determined

movq (%rdx), %rax // read count value
addq $1, %rax // modify value
movq %rax, (%rdx) // write count

How about if compiler implements it as:

incq (%rdx) // increment value

How about if compiler implements it as:

Atomicity

• The implementation of acquiring/releasing critical section must be
atomic.
– An atomic operation is one which executes as though it could not be interrupted
– Code that executes “all or nothing”

• How do we make them atomic?
– Atomic instructions (e.g., test-and-set, compare-and-swap)
– Allows us to build “semaphore” OS abstraction

Four Rules for Mutual Exclusion

1. No two threads can be inside their critical sections at the same time
(one of many but not more than one).

2. No thread outside its critical section may prevent others from entering
their critical sections.

3. No thread should have to wait forever to enter its critical section.
(Starvation)

4. No assumptions can be made about speeds or number of CPU’s.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

O.S. Semaphore:
- Construct that the

OS provides to
processes.

- Make system calls
to modify their
value

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: run the entire instruction without interruption.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section
T0: Reads the value of mutex,
 Changes the value of mutex = 0 (acquires lock)
 Enters critical section.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section
T0: Reads the value of mutex,
 Changes the value of mutex = 0 (acquires lock)
 Enters critical section.

Atomic Execution

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: In the critical section
T1: Wants to enter the critical section.
 Reads the value of mutex (mutex = 0)
 Cannot enter critical section.
 Blocked.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section
 Updates mutex value = 1. (release lock)

Atomic Execution

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section
 Updates mutex value = 1. (release lock)

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //locked.

Atomicity: run the entire instruction without interruption.

T1: Can now acquire lock atomically and
 Enter the critical section

Mutual Exclusion with Semaphores

• Use a “mutex” semaphore initialized to 1
• Only one thread can enter critical section at a time.
• Simple, works for any number of threads

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: runs as an entire instruction or not at all.

Semaphores

• Semaphore: OS synchronization variable
– Has integer value
– List of waiting threads

• Works like a gate
• If sem > 0, gate is open
– Value equals number of threads that can enter

• Else, gate is closed
– Possibly with waiting threads

critical
section

sem = 1
sem = 2

sem = 3

sem = 0

Semaphores

• Associated with each semaphore is a queue of waiting threads
• When wait() is called by a thread:
– If semaphore is open, thread continues
– If semaphore is closed, thread blocks on queue

• Then signal() opens the semaphore:
– If a thread is waiting on the queue, the thread is unblocked
– If no threads are waiting on the queue, the signal is remembered for the next

thread

Semaphore Operations

sem s = n; // declare and initialize

wait (sem s) // Executes atomically(*)
 decrement s;
 if s < 0:
 block thread (and associate with s);

signal (sem s) // Executes atomically(*)
 increment s;
 if blocked threads:
 unblock (any) one of them;

(*) With help from special hardware instructions.

Semaphore Operations

Based on what you know about semaphores, should a process be able
to check beforehand whether wait(s) will cause it to block?

A. Yes, it should be able to check.
B. No, it should not be able to check.

sem s = n; // declare and initialize

wait (sem s) // Executes atomically(*)
 decrement s;
 if s < 0:
 block thread (and associate with s);

signal (sem s) // Executes atomically(*)
 increment s;
 if blocked threads:
 unblock (any) one of them;

Semaphore Operations

• No other operations allowed
• In particular, semaphore’s value can’t be tested!
• No thread can tell the value of s

sem s = n; // declare and initialize

wait (sem s) // Executes atomically(*)
 decrement s;
 if s < 0:
 block thread (and associate with s);

signal (sem s) // Executes atomically(*)
 increment s;
 if blocked threads:
 unblock (any) one of them;

Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”
– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

Barriers

• Used to coordinate threads, but also other forms of concurrent
execution.

• Often found in simulations that have discrete rounds. (e.g., game of life)

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

T1T0 T2 T3 T4

Barrier (0 waiting)

Time

Barrier Example, N Threads

Time

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing
current round at different rates.

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier Example, N Threads

Time

Barrier (3 waiting)

Threads that make it to barrier must
wait for all others to get there.

T1

T0 T2

T3

T4

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier Example, N Threads

Time

Barrier (5 waiting)

Barrier allows threads to pass when
N threads reach it.

T1T0 T2 T3 T4

Matches

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier Example, N Threads

Barrier (0 waiting)

Threads compute next round, wait
on barrier again, repeat…

T1

T0 T2 T3

T4

Time

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Synchronization: More than Mutexes

• I want all my threads to sync up at the same point.
– Barrier: wait for everyone to catch up.

• I want to block a thread until something specific happens.
– Condition variable: wait for a condition to be true

• I want my threads to share a critical section when they’re
reading, but still safely write.
– Readers/writers lock: distinguish how lock is used

Synchronization: Beyond Mutexes
Message Passing

• Operating system mechanism for IPC
– send (destination, message_buffer)
– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization: can’t receive until message is sent

send (to, buf) receive (from, buf)

kernel

P1 P2

Summary

• We have no idea when OS will schedule or context
switch our threads.
– Code must be prepared, tough to reason about.

• Threads often must synchronize
– To safely communicate / transfer data, without races

• Synchronization primitives help programmers
– Kernel-level semaphores: limit # of threads that can do

something, provides atomicity
– User-level locks: built upon semaphore, provides mutual

exclusion (usually part of thread library)

Additional Slides: Solution to the Race
Condition

Solution with mutexes

main ()
{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

Thread A
main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;
 saveShared(a);

 return a;

}

Thread B

 s = 40;

shared
memory

Using Locks

main ()

{ int a,b;

 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

Thread A
main ()

{ int a,b;

 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 return a;

}

Thread B

 s = 40;

shared
memory

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}
 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}
 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}
 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}
 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}
 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}
 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread B

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}
 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()

{ int a,b;

 acquire(l);
 a = getShared();
 b = 10;

 a = a + b;

 saveShared(a);

 release(l);

 return a;

}

main ()

{ int a,b;

 acquire(l);
 a = getShared();

 b = 20;
 a = a - b;

 saveShared(a);

 release(l);

 return a;

}

 s = 40;
 Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

• No matter how we order threads or when we context switch,
result will always be 30, like we expected (and probably wanted).

