
CS 31: Intro to Systems
Virtual Memory

Vasanta Chaganti & Kevin Webb

Swarthmore College

November 21, 2023

Memory

• Abstraction goal: make every process
think it has the same memory layout.

– MUCH simpler for compiler if the stack
always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory to
go around, and no two processes should
use the same (physical) memory
addresses.

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track
of who’s using each memory region.

0x0

0xFFFFFFFF

OS

Stack

Text

Data

Heap

Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Physical Memory: The contents of
the hardware (RAM) memory.
Managed by OS. Only ONE of these
for the entire machine!

Virtual (logical) Memory: The
abstract view of memory given to
processes. Each process gets an
independent view of the memory.

Address Space:
Range of addresses for
a region of memory.

The set of available
storage locations.

0x0

0x…
(Determined by amount of installed RAM.)

0x0

0xFFFFFFFFVirtual address space
(VAS): fixed size.

OS

Stack

Text

Data

Heap

OS

Stack

Text

Data

Heap

OS

Stack

Text

Data

Heap

Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Address Space:
Range of addresses for
a region of memory.

The set of available
storage locations.

0x0

0x…
(Determined by amount of installed RAM.)

0x0

0xFFFFFFFFVirtual address space
(VAS): fixed size.

OS

Stack

Text

Data

Heap

OS

Stack

Text

Data

Heap

OS

Stack

Text

Data

Heap

Note: It is common for VAS to appear larger than physical memory.
 32-bit (IA32): Can address up to 4 GB, might have less installed
 64-bit (X86-64): Our lab machines have 48-bit VAS (256 TB), 39-bit PAS (512 GB)

Cohabitating Physical Memory

• If process is to be given CPU, it must also be in memory.

• Problem

– Context-switching time (CST): 10 µsec

– Loading from disk: 10 MB/s

– To load 1 MB process: 100 msec = 10,000 x CST

– Too much overhead! Breaks illusion of simultaneity

• Solution: keep multiple processes in memory

– Context switch only between processes already in memory

Memory Issues and Topics

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging

Plan: Start with the basics (very old, classic
problems) to motivate why we need the complex

machinery of virtual memory and paging.

Problem: Placement

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging

Memory Management

• Physical memory starts as one big empty space.

Memory Management

• Physical memory starts as one big empty space.

• Processes need to be in memory to
execute.

Memory Management

• Physical memory starts as one big empty space.

• When creating process, allocate memory

– Find space that can contain process

– Allocate region within that gap

– Typically, leaves a (smaller) free space

Memory Management

• Physical memory starts as one big empty space.

• When creating process, allocate memory

– Find space that can contain process

– Allocate region within that gap

– Typically, leaves a (smaller) free space

• When process exits, free its memory

– Creates a gap in the physical address space.

– If next to another gap, coalesce.

Fragmentation

• Eventually, memory becomes fragmented
– After repeated allocations/de-allocations

• Internal fragmentation
– Unused space within process

– Cannot be allocated to others

– Can come in handy for growth

• External fragmentation
– Unused space outside any process (gaps)

– Can be allocated (too small/not useful?)

Which form of fragmentation is easiest for the OS to
reduce/eliminate? Why?

A. Internal fragmentation

B. External fragmentation

C. Neither

Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit

– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit

– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit

– Worst fit

Which memory allocation algorithm
would you choose? Why?

A. first-fit

B. worst-fit

C. best-fit

Is leaving small fragments a
good thing or a bad thing?

Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit: fast

– Best fit

– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit: leaves small fragments

– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit

– Worst fit: leaves large fragments

What if it doesn’t fit?

• There may still be significant unused space

– External fragments

– Internal fragments

• Approaches

What if it doesn’t fit?

• There may still be significant unused space

– External fragments

– Internal fragments

• Approaches

– Compaction

What if it doesn’t fit?

• There may still be significant unused space

– External fragments

– Internal fragments

• Approaches

– Compaction

– Break process memory into pieces

• Easier to fit.

• More state to keep track of.

Problem Summary: Placement

• When placing a process, it may be difficult to find a large
enough free region in physical memory.

• Fragmentation makes this harder over time (free pieces get
smaller, spread out).

• General solution: don’t require all of a process’s memory to be
in one piece!

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be
in one piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be
in one piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Place

Process 3

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be
in one piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Place

Process 3

Process 3

Process 3

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be
in one piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Place

Process 3

Process 3

Process 3Process 3

OS may choose not to place parts
in memory at all.

Problem: Addressing

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging

(More) Problems with Memory Cohabitation

• Addressing:

– Compiler generates memory references

– Unknown where process will be located

• Protection:

– Modifying another process’s memory

• Sharing Space:

– The more processes there are, the less memory
each individually can have

P2

P1

P3

Compiler’s View of Memory

• Compiler generates memory addresses

– Needs empty region for text, data, stack

– Ideally, very large to allow data and stack to grow

• Without abstractions compiler would need to know…

– Physical memory size

– Where to place data (e.g., stack at high end)

• Must avoid allocated regions in memory

Address Spaces

• Address space

– Set of addresses for memory

• Usually linear: 0 to N-1 (size N)

• Physical Address Space

– 0 to N-1, N = size

– Kernel occupies lowest addresses

0

N-1

PAS

kernel

PM

Virtual vs. Physical Addressing

• Virtual addresses

– Assumes separate memory
starting at 0

– Compiler generated

– Independent of location in
physical memory

• OS: Map virtual to physical

P1

0

N1-1

P2

0

N2-1

P3

0

N3-1

VM’sVAS’s

P2

P1

P3

0

N-1

PMPAS

When should we perform the mapping from virtual
to physical address? Why?

A. When the process is initially loaded: convert all the addresses
to physical addresses

B. When the process is running: map the addresses as they’re
used.

C. Perform the mapping at some other time. When?

Hardware for Virtual Addressing

• Base register filled with start
address

• To translate address, add base

• Achieves “relocation”: process’s
physical memory location could
be moved.

• To move process: change base P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Note: This is a simpler model than what we do in real
systems today. We’re still working toward the real thing.

Hardware for Virtual Addressing

• Base register filled with start
address

• To translate address, add base

• Achieves “relocation”: process’s
physical memory location could
be moved.

• To move process: change base

• Protection?

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Protection

• Bound register works with base
register

• Is address < bound

– Yes: add to base

– No: invalid address, invoke OS

• Achieves protection

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

<

Bound

y/n?

When would we need to update
these base & bound registers?

Memory Registers Part of Context

• On Every Context Switch

– Load base/bound registers for selected process

– Only kernel does loading of these registers

– Kernel must be protected from all processes

• Benefit

– Allows each process to be separately located

– Protects each process from all others

Problem Summary: Addressing

• Compiler has no idea where, in physical memory, the process’s
data will be.

• Compiler generates instructions to access VAS.

• General solution: OS must translate process’s VAS accesses to
the corresponding physical memory location.

Problem Summary: Addressing

• General solution: OS must translate process’s
VAS accesses to the corresponding physical
memory location.

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Translate

Process 3

Process 3

Process 3
Process 3

When the process tries to access a
virtual address, the OS translates it to
the corresponding physical address.

ldr x0, [address]

Problem Summary: Addressing

• General solution: OS must translate process’s
VAS accesses to the corresponding physical
memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a
virtual address, the OS translates it to
the corresponding physical address.

ldr x0, [address]

Let’s combine these ideas:

1. Allow process memory to be divided up into multiple pieces.

2. Keep state in OS (+ hardware/registers) to map from virtual
addresses to physical addresses.

Result: Keep a table to store the mapping of each region.

Problem Summary: Addressing

• General solution: OS must translate process’s
VAS accesses to the corresponding physical
memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a
virtual address, the OS translates it to
the corresponding physical address.

movl (address 0x74), %eax
OS must keep a table, for each
process, to map VAS to PAS.
One entry per divided region.

Two (Real) Approaches

• Segmented address space/memory

• Partition address space and memory
into segments

• Segments are generally different sizes

• Paged address space/memory

• Partition address space and memory
into pages

• All pages are the same size

Two (Real) Approaches

• Segmented address space/memory

• Partition address space and memory
into segments

• Segments are generally different sizes

• Paged address space/memory

• Partition address space and memory
into pages

• All pages are the same size

In this class, we’re only going to look at
paging, the most common method today.

Paging Vocabulary

• For each process, the virtual address space is divided into
fixed-size pages.

• For the system, the physical memory is divided into fixed-size
frames.

• The size of a page is equal to that of a frame.

– Often 4 KB in practice.

Main Idea
• ANY virtual page can be stored in any available

frame.

– Makes finding an appropriately-sized memory gap
very easy – they’re all the same size.

• For each process, OS keeps a table mapping
each virtual page to physical frame.

Main Idea
• ANY virtual page can be stored in any available

frame.

– Makes finding an appropriately-sized memory gap
very easy – they’re all the same size.

Physical
Memory

Virtual
Memory

(OS Mapping)

Implications for fragmentation?

External: goes away. No more
awkwardly-sized, unusable gaps.

Internal: About the same.
Process can always request
memory and not use it.

Addressing

• Like we did with caching, we’re going to chop up memory
addresses into partitions.

• Virtual addresses:
– High-order bits: page #

– Low-order bits: offset within the page

• Physical addresses:
– High-order bits: frame #

– Low-order bits: offset within the frame

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.

• We need enough bits to individually address
each byte in the page.

– How many bits do we need to address 8192 items?

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.

• We need enough bits to individually address
each byte in the page.

– How many bits do we need to address 8192 items?

– 213 = 8192, so we need 13 bits.

– Lowest 13 bits: offset within page.

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.

• We need enough bits to individually address
each byte in the page.

– How many bits do we need to address 8192 items?

– 213 = 8192, so we need 13 bits.

– Lowest 13 bits: offset within page.

• Remaining 19 bits: page number.

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.

• We need enough bits to individually address
each byte in the page.

– How many bits do we need to address 8192 items?

– 213 = 8192, so we need 13 bits.

– Lowest 13 bits: offset within page.

• Remaining 19 bits: page number.

We’ll call these bits p. We’ll call these bits i.

Address Partitioning
We’ll call these bits p. We’ll call these bits i.

Virtual
address:

Physical
address:

We’ll (still) call these bits i.

Once we’ve
found the frame,
which byte(s) do
we want to
access?

Address Partitioning
We’ll call these bits p. We’ll call these bits i.

OS Page Table
For Process

Virtual
address:

Physical
address:

We’ll (still) call these bits i.We’ll call these bits f.

Where is this page in
physical memory?
(In which frame?)

Once we’ve
found the frame,
which byte(s) do
we want to
access?

Address Translation

Logical Address

Page p Offset i

FrameV Perm …R D

Physical Memory

Page Table

Address Translation

Logical Address

Page p Offset i

FrameV Perm …R D

Physical Memory

Page Table

Address Translation

Logical Address

Page p Offset i

Physical Address

FrameV Perm …R D

Physical Memory

Page Table

Page Table

• One table per process

• Table entry elements
– V: valid bit

– R: referenced bit

– D: dirty bit

– Frame: location in physical memory

– Perm: access permissions

• Table parameters in memory
– Page table base register

– Page table size register

FrameV Perm …PTBR

PTSR

R D

Address Translation

• Physical address =
frame of p + offset i

• First, do a series of
checks

Logical Address

Page p Offset i

Physical Address

FrameV Perm …R D

Check if Page p is Within Range

Logical Address

Page p

PTBR

PTSR

p < PTSR

Offset i

Physical Address

FrameV Perm …R D

Check if Page Table Entry p is Valid

Logical Address

Page p

PTBR

PTSR

V == 1

Offset i

Physical Address

FrameV Perm …R D

Check if Operation is Permitted

Logical Address

Page p

PTBR

PTSR

Perm (op)

Offset i

Physical Address

FrameV Perm …R D

Translate Address

Logical Address

Page p

PTBR

PTSR

Offset i

Physical Address

FrameV Perm …R D

concat

Physical Address by Concatenation

Logical Address

Page p

PTBR

PTSR

Offset i

FrameV Perm …R D

Physical Address

Frame f Offset i

Sizing the Page Table

Logical Address

Page p Offset i

Number of bits n
specifies max size
of table, where
number of entries
= 2n

Number of bits needed to address
physical memory in units of frames

Number of bits
specifies page/frame size

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

…

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

?

…

FrameV Perm …R D

How many entries (rows) will there be in this page
table?

A. 212, because that’s how many the offset field
can address

B. 220, because that’s how many the page field
can address

C. 230, because that’s how many we need to
address 1 GB

D. 232, because that’s the size of the entire
address space

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

How big is a
frame?

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

What will be the frame size, in bytes?

A. 212, because that’s how many bytes the offset field can
address

B. 220, because that’s how many bytes the page field can address

C. 230, because that’s how many bytes we need to address 1 GB

D. 232, because that’s the size of the entire address space

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

How many bits do we need to store the
frame number?

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

• A: 12 B: 18 C: 20 D: 30 E: 32

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

?

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

Size of an entry?

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

FrameV Perm …R D

Total table size?

Example of Sizing the Page Table

• 4 MB of bookkeeping for every process?
– 200 processes -> 800 MB just to store page tables…

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

Table size =
1 M x 4 = 4 MB

FrameV Perm …R D

Concerns

• Great, this page table idea solves a lot of those big problems
we identified earlier, but…

1. We’re going to need a ton of memory just for page tables…

2. Wait, if we need to do a lookup in our page table, which is in
memory, every time a process accesses memory…

– Isn’t that slowing down memory by a factor of 2?

Multi-Level Page Tables
(You’re not responsible for this. Take an OS class for the details.)

Logical Address

1st-level Page d Offset i

FrameV …R D

2nd-level Page p

FrameV …R DPoints to (base) frame
containing 2nd-level
page table

concat

Physical Address
Reduces memory usage SIGNIFICANTLY:
only allocate page table space when we
need it. More memory accesses though…

Cost of Translation

• Each lookup costs another memory reference
– For each reference, additional references required

– Slows machine down by factor of 2 or more

• Take advantage of locality
– Most references are to a small number of pages

– Keep translations of these in high-speed memory (a special fully-
associative cache for page translation) called the translation look-
aside buffer (TLB)

TLB: Translation Look-aside Buffer

• Fast memory keeps most recent translations

– Fully associative hardware lookup

• If page matches, get frame number
else wait for normal translation (in parallel)

page

Page p Offset i

Match
page

frame

Frame f Offset i

Problem Summary: Addressing

• General solution: OS must translate process’s
VAS accesses to the corresponding physical
memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a
virtual address, the OS translates it to
the corresponding physical address.

movl (address 0x74), %eax
OS must keep a table, for each
process, to map VAS to PAS.
One entry per divided region.

Problem: Storage

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging

Recall “Storage Problem”

• We must keep multiple processes in memory, but how many?

– Lots of processes: they must be small

– Big processes: can only fit a few

• How do we balance this tradeoff?

Locality to the rescue!

Virtual Memory Implications

• Not all pieces need to be in memory
– Need only piece being referenced

– Other pieces can be on disk

– Bring pieces in only when needed

• Illusion: there is much more memory

• What’s needed to support this idea?
– A way to identify whether a piece is in memory

– A way to bring in pieces (from where, to where?)

– Relocation (which we have)

Virtual Memory based on Paging

• Before

– All virtual pages were in physical memory

VM PM

Page
Table

Virtual Memory based on Paging

• Now
– All virtual pages reside on disk

– Some also reside in physical memory (which ones?)

• Ever been asked about a swap partition on Linux?

VM PM

Page
Table

Memory
Hierarchy

Sample Contents of Page Table Entry

• Valid: is entry valid (page in physical memory)?

• Ref: has this page been referenced recently?

• Dirty: has this page been modified?

• Frame: what frame is this page in?

• Protection: what are the allowable operations?

– read/write/execute

Frame numberValid Ref Dirty Prot: rwx

Page Fault

• A page fault occurs when a process tries to access a page, but
the page table entry is invalid. That is, the page is not
currently mapped to a physical frame.

A page fault occurs. What must we do in response?

A. Find the faulting page on disk.

B. Evict a page from memory and write it to disk.

C. Bring in the faulting page and retry the operation.

D. Two of the above

E. All of the above

Address Translation and Page Faults

• Get entry: index page table with page number

• If valid bit is off, page fault

– Trap into operating system

– Find page on disk (kept in kernel data structure)

– Read it into a free frame

• may need to make room: page replacement

– Record frame number in page table entry, set valid

– Retry instruction (return from page-fault trap)

Page Faults are Expensive

• Disk: 5-6 orders magnitude slower than RAM

– Very expensive; but if very rare, tolerable

• Example

– RAM access time: 100 nsec

– Disk access time: 10 msec

– p = page fault probability

– Effective access time: 100 + p × 10,000,000 nsec

– If p = 0.1%, effective access time = 10,100 nsec !

Handing faults from disk seems very
expensive. How can we get away with
this in practice?

A. We have lots of memory, and it isn’t usually full.

B. We use special hardware to speed things up.

C. We tend to use the same pages over and over.

D. This is too expensive to do in practice!

Principle of Locality

• Not all pieces referenced uniformly over time

– Make sure most referenced pieces in memory

– If not, thrashing: constant fetching of pieces

• References cluster in time/space

– Will be to same or neighboring areas

– Allows prediction based on past

Page Replacement

• Goal: remove page(s) not exhibiting locality

• Page replacement is about

– which page(s) to remove

– when to remove them

• How to do it in the cheapest way possible

– Least amount of additional hardware

– Least amount of software overhead

Basic Page Replacement Algorithms

• FIFO: select page that is oldest

– Simple: use frame ordering

– Doesn’t perform very well (oldest may be popular)

• OPT: select page to be used furthest in future

– Optimal, but requires future knowledge

– Establishes best case, good for comparisons

• LRU: select page that was least recently used

– Predict future based on past; works given locality

– Costly: time-stamp pages each access, find least

• Goal: minimize replacements (maximize locality)

Summary

• We give each process a virtual address space to
simplify process execution.

• OS maintains mapping of virtual address to
physical memory location (e.g., in page table).
– One page table for every process

– TLB hardware helps to speed up translation

• Provides the abstraction of very large memory:
not all pages need be resident in memory
– Bring pages in from disk on demand

	Slide 1: CS 31: Intro to Systems Virtual Memory
	Slide 10: Memory
	Slide 11: Memory Terminology
	Slide 12: Memory Terminology
	Slide 13: Cohabitating Physical Memory
	Slide 14: Memory Issues and Topics
	Slide 15: Problem: Placement
	Slide 16: Memory Management
	Slide 17: Memory Management
	Slide 18: Memory Management
	Slide 19: Memory Management
	Slide 20: Fragmentation
	Slide 21: Which form of fragmentation is easiest for the OS to reduce/eliminate? Why?
	Slide 22: Placing Memory
	Slide 23: Placing Memory
	Slide 24: Placing Memory
	Slide 25: Which memory allocation algorithm would you choose? Why?
	Slide 28: Placing Memory
	Slide 29: Placing Memory
	Slide 30: Placing Memory
	Slide 31: What if it doesn’t fit?
	Slide 32: What if it doesn’t fit?
	Slide 33: What if it doesn’t fit?
	Slide 34: Problem Summary: Placement
	Slide 35: Problem Summary: Placement
	Slide 36: Problem Summary: Placement
	Slide 37: Problem Summary: Placement
	Slide 38: Problem Summary: Placement
	Slide 39: Problem: Addressing
	Slide 40: (More) Problems with Memory Cohabitation
	Slide 41: Compiler’s View of Memory
	Slide 42: Address Spaces
	Slide 43: Virtual vs. Physical Addressing
	Slide 44: When should we perform the mapping from virtual to physical address? Why?
	Slide 45: Hardware for Virtual Addressing
	Slide 46: Hardware for Virtual Addressing
	Slide 47: Protection
	Slide 49: Memory Registers Part of Context
	Slide 50: Problem Summary: Addressing
	Slide 51: Problem Summary: Addressing
	Slide 52: Problem Summary: Addressing
	Slide 53: Let’s combine these ideas:
	Slide 54: Problem Summary: Addressing
	Slide 55: Two (Real) Approaches
	Slide 56: Two (Real) Approaches
	Slide 63: Paging Vocabulary
	Slide 64: Main Idea
	Slide 65: Main Idea
	Slide 66: Addressing
	Slide 67: Example: 32-bit virtual addresses
	Slide 68: Example: 32-bit virtual addresses
	Slide 69: Example: 32-bit virtual addresses
	Slide 70: Example: 32-bit virtual addresses
	Slide 71: Address Partitioning
	Slide 72: Address Partitioning
	Slide 73: Address Translation
	Slide 74: Address Translation
	Slide 75: Address Translation
	Slide 76: Page Table
	Slide 77: Address Translation
	Slide 78: Check if Page p is Within Range
	Slide 79: Check if Page Table Entry p is Valid
	Slide 80: Check if Operation is Permitted
	Slide 81: Translate Address
	Slide 82: Physical Address by Concatenation
	Slide 83: Sizing the Page Table
	Slide 84: Example of Sizing the Page Table
	Slide 85: Example of Sizing the Page Table
	Slide 86: How many entries (rows) will there be in this page table?
	Slide 87: Example of Sizing the Page Table
	Slide 88: Example of Sizing the Page Table
	Slide 89: What will be the frame size, in bytes?
	Slide 90: Example of Sizing the Page Table
	Slide 91: How many bits do we need to store the frame number?
	Slide 92: Example of Sizing the Page Table
	Slide 94: Example of Sizing the Page Table
	Slide 95: Example of Sizing the Page Table
	Slide 96: Concerns
	Slide 97: Multi-Level Page Tables (You’re not responsible for this. Take an OS class for the details.)
	Slide 98: Cost of Translation
	Slide 99: TLB: Translation Look-aside Buffer
	Slide 102: Problem Summary: Addressing
	Slide 103: Problem: Storage
	Slide 104: Recall “Storage Problem”
	Slide 105: Virtual Memory Implications
	Slide 106: Virtual Memory based on Paging
	Slide 107: Virtual Memory based on Paging
	Slide 108: Sample Contents of Page Table Entry
	Slide 109: Page Fault
	Slide 110: A page fault occurs. What must we do in response?
	Slide 111: Address Translation and Page Faults
	Slide 112: Page Faults are Expensive
	Slide 113: Handing faults from disk seems very expensive. How can we get away with this in practice?
	Slide 114: Principle of Locality
	Slide 115: Page Replacement
	Slide 116: Basic Page Replacement Algorithms
	Slide 117: Summary

