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Memory

• Abstraction goal: make every process 
think it has the same memory layout.

– MUCH simpler for compiler if the stack 
always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory to 
go around, and no two processes should 
use the same (physical) memory 
addresses.
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OS (with help from hardware) will keep track 
of who’s using each memory region.
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Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Physical Memory: The contents of 
the hardware (RAM) memory.
Managed by OS.  Only ONE of these 
for the entire machine!

Virtual (logical) Memory: The 
abstract view of memory given to 
processes.  Each process gets an 
independent view of the memory.

Address Space:
Range of addresses for 
a region of memory.

The set of available 
storage locations.
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Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Address Space:
Range of addresses for 
a region of memory.

The set of available 
storage locations.

0x0

0x…
(Determined by amount of  installed RAM.)

0x0

0xFFFFFFFFVirtual address space 
(VAS): fixed size.
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Note: It is common for VAS to appear larger than physical memory.
      32-bit (IA32): Can address up to 4 GB, might have less installed
      64-bit (X86-64): Our lab machines have 48-bit VAS (256 TB), 39-bit PAS (512 GB)



Cohabitating Physical Memory

• If process is to be given CPU, it must also be in memory.

• Problem

– Context-switching time (CST): 10 µsec

– Loading from disk: 10 MB/s

– To load 1 MB process: 100 msec = 10,000 x CST

– Too much overhead!  Breaks illusion of simultaneity

• Solution: keep multiple processes in memory

– Context switch only between processes already in memory



Memory Issues and Topics

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging

Plan: Start with the basics (very old, classic 
problems) to motivate why we need the complex 

machinery of virtual memory and paging.



Problem: Placement

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging



Memory Management

• Physical memory starts as one big empty space.



Memory Management

• Physical memory starts as one big empty space.

• Processes need to be in memory to
execute.



Memory Management

• Physical memory starts as one big empty space.

• When creating process, allocate memory

– Find space that can contain process

– Allocate region within that gap

– Typically, leaves a (smaller) free space



Memory Management

• Physical memory starts as one big empty space. 

• When creating process, allocate memory

– Find space that can contain process

– Allocate region within that gap

– Typically, leaves a (smaller) free space

• When process exits, free its memory

– Creates a gap in the physical address space.

– If next to another gap, coalesce.



Fragmentation

• Eventually, memory becomes fragmented
– After repeated allocations/de-allocations

• Internal fragmentation
– Unused space within process

– Cannot be allocated to others

– Can come in handy for growth

• External fragmentation
– Unused space outside any process (gaps)

– Can be allocated (too small/not useful?)



Which form of fragmentation is easiest for the OS to 
reduce/eliminate?  Why?

A. Internal fragmentation

B. External fragmentation

C. Neither



Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit

– Worst fit
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Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit

– Worst fit



Which memory allocation algorithm 
would you choose?  Why?

A. first-fit

B. worst-fit

C. best-fit

Is leaving small fragments a 
good thing or a bad thing?



Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit: fast

– Best fit

– Worst fit



Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit: leaves small fragments

– Worst fit



Placing Memory

• When searching for space, what if there are multiple options?

• Algorithms

– First (or next) fit

– Best fit

– Worst fit: leaves large fragments



What if it doesn’t fit?

• There may still be significant unused space

– External fragments

– Internal fragments

• Approaches
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What if it doesn’t fit?

• There may still be significant unused space

– External fragments

– Internal fragments

• Approaches

– Compaction

– Break process memory into pieces

• Easier to fit.

• More state to keep track of.



Problem Summary: Placement

• When placing a process, it may be difficult to find a large 
enough free region in physical memory.

• Fragmentation makes this harder over time (free pieces get 
smaller, spread out).

• General solution: don’t require all of a process’s memory to be 
in one piece!
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• General solution: don’t require all of a process’s memory to be 
in one piece!
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Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be 
in one piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Place

Process 3

Process 3

Process 3Process 3

OS may choose not to place parts 
in memory at all.



Problem: Addressing

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging



(More) Problems with Memory Cohabitation

• Addressing:

– Compiler generates memory references

– Unknown where process will be located

• Protection:

– Modifying another process’s memory

• Sharing Space:

– The more processes there are, the less memory 
each individually can have

P2

P1

P3



Compiler’s View of Memory

• Compiler generates memory addresses

– Needs empty region for text, data, stack

– Ideally, very large to allow data and stack to grow

• Without abstractions compiler would need to know…

– Physical memory size

– Where to place data (e.g., stack at high end)

• Must avoid allocated regions in memory



Address Spaces

• Address space

– Set of addresses for memory

• Usually linear: 0 to N-1 (size N)

• Physical Address Space

– 0 to N-1, N = size

– Kernel occupies lowest addresses

0

N-1

PAS

kernel

PM



Virtual vs. Physical Addressing

• Virtual addresses

– Assumes separate memory 
starting at 0

– Compiler generated

– Independent of location in 
physical memory

• OS: Map virtual to physical

P1

0

N1-1

P2

0

N2-1

P3

0

N3-1

VM’sVAS’s

P2

P1

P3

0

N-1

PMPAS



When should we perform the mapping from virtual 
to physical address? Why?

A. When the process is initially loaded: convert all the addresses 
to physical addresses

B. When the process is running: map the addresses as they’re 
used.

C. Perform the mapping at some other time. When?



Hardware for Virtual Addressing

• Base register filled with start 
address

• To translate address, add base

• Achieves “relocation”: process’s
physical memory location could 
be moved.

• To move process: change base P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Note: This is a simpler model than what we do in real 
systems today.  We’re still working toward the real thing.



Hardware for Virtual Addressing

• Base register filled with start 
address

• To translate address, add base

• Achieves “relocation”: process’s
physical memory location could 
be moved.

• To move process: change base

• Protection?

P2

0

N2-1

P2

P1

P3

0

N-1

Base +



Protection

• Bound register works with base 
register

• Is address < bound

– Yes: add to base

– No: invalid address, invoke OS

• Achieves protection

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

<

Bound

y/n?

When would we need to update 
these base & bound registers?



Memory Registers Part of Context

• On Every Context Switch

– Load base/bound registers for selected process

– Only kernel does loading of these registers

– Kernel must be protected from all processes

• Benefit

– Allows each process to be separately located

– Protects each process from all others



Problem Summary: Addressing

• Compiler has no idea where, in physical memory, the process’s 
data will be.

• Compiler generates instructions to access VAS.

• General solution: OS must translate process’s VAS accesses to 
the corresponding physical memory location.



Problem Summary: Addressing

• General solution: OS must translate process’s 
VAS accesses to the corresponding physical 
memory location.

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Translate

Process 3

Process 3

Process 3
Process 3

When the process tries to access a 
virtual address, the OS translates it to 
the corresponding physical address.

ldr x0, [address]



Problem Summary: Addressing

• General solution: OS must translate process’s 
VAS accesses to the corresponding physical 
memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a 
virtual address, the OS translates it to 
the corresponding physical address.

ldr x0, [address]



Let’s combine these ideas:

1. Allow process memory to be divided up into multiple pieces.

2. Keep state in OS (+ hardware/registers) to map from virtual 
addresses to physical addresses.

Result: Keep a table to store the mapping of each region.



Problem Summary: Addressing

• General solution: OS must translate process’s 
VAS accesses to the corresponding physical 
memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a 
virtual address, the OS translates it to 
the corresponding physical address.

movl (address 0x74), %eax
OS must keep a table, for each 
process, to map VAS to PAS.
One entry per divided region.



Two (Real) Approaches

• Segmented address space/memory

• Partition address space and memory 
into segments

• Segments are generally different sizes

• Paged address space/memory

• Partition address space and memory 
into pages

• All pages are the same size



Two (Real) Approaches

• Segmented address space/memory

• Partition address space and memory 
into segments

• Segments are generally different sizes

• Paged address space/memory

• Partition address space and memory 
into pages

• All pages are the same size

In this class, we’re only going to look at 
paging, the most common method today.



Paging Vocabulary

• For each process, the virtual address space is divided into 
fixed-size pages.

• For the system, the physical memory is divided into fixed-size 
frames.

• The size of a page is equal to that of a frame.

– Often 4 KB in practice.



Main Idea
• ANY virtual page can be stored in any available 

frame.

– Makes finding an appropriately-sized memory gap 
very easy – they’re all the same size.

• For each process, OS keeps a table mapping 
each virtual page to physical frame.



Main Idea
• ANY virtual page can be stored in any available 

frame.

– Makes finding an appropriately-sized memory gap 
very easy – they’re all the same size.

Physical
Memory

Virtual
Memory

(OS Mapping)

Implications for fragmentation?

External: goes away.  No more 
awkwardly-sized, unusable gaps.

Internal: About the same.  
Process can always request 
memory and not use it.



Addressing

• Like we did with caching, we’re going to chop up memory 
addresses into partitions.

• Virtual addresses:
– High-order bits: page #

– Low-order bits: offset within the page

• Physical addresses:
– High-order bits: frame #

– Low-order bits: offset within the frame



Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.

• We need enough bits to individually address 
each byte in the page.

– How many bits do we need to address 8192 items?
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• Suppose we have 8-KB (8192-byte) pages.

• We need enough bits to individually address 
each byte in the page.
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– 213 = 8192, so we need 13 bits.

– Lowest 13 bits: offset within page.

• Remaining 19 bits: page number.



Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.

• We need enough bits to individually address 
each byte in the page.

– How many bits do we need to address 8192 items?

– 213 = 8192, so we need 13 bits.

– Lowest 13 bits: offset within page.

• Remaining 19 bits: page number.

We’ll call these bits p. We’ll call these bits i.



Address Partitioning
We’ll call these bits p. We’ll call these bits i.

Virtual 
address:

Physical 
address:

We’ll (still) call these bits i.

Once we’ve 
found the frame, 
which byte(s) do 
we want to 
access?



Address Partitioning
We’ll call these bits p. We’ll call these bits i.

OS Page Table
For Process

Virtual 
address:

Physical 
address:

We’ll (still) call these bits i.We’ll call these bits f.

Where is this page in 
physical memory?
(In which frame?)

Once we’ve 
found the frame, 
which byte(s) do 
we want to 
access?



Address Translation

Logical Address

Page p Offset i

FrameV Perm …R D

Physical Memory

Page Table



Address Translation

Logical Address

Page p Offset i

FrameV Perm …R D

Physical Memory

Page Table



Address Translation

Logical Address

Page p Offset i

Physical Address

FrameV Perm …R D

Physical Memory

Page Table



Page Table

• One table per process

• Table entry elements
– V: valid bit

– R: referenced bit

– D: dirty bit

– Frame: location in physical memory

– Perm: access permissions

• Table parameters in memory
– Page table base register

– Page table size register

FrameV Perm …PTBR

PTSR

R D



Address Translation

• Physical address = 
frame of p + offset i

• First, do a series of 
checks

Logical Address

Page p Offset i

Physical Address

FrameV Perm …R D



Check if Page p is Within Range

Logical Address

Page p

PTBR

PTSR

p < PTSR

Offset i

Physical Address

FrameV Perm …R D



Check if Page Table Entry p is Valid

Logical Address

Page p

PTBR

PTSR

V == 1

Offset i

Physical Address

FrameV Perm …R D



Check if Operation is Permitted

Logical Address

Page p

PTBR

PTSR

Perm (op)

Offset i

Physical Address

FrameV Perm …R D



Translate Address

Logical Address

Page p

PTBR

PTSR

Offset i

Physical Address

FrameV Perm …R D

concat



Physical Address by Concatenation

Logical Address

Page p

PTBR

PTSR

Offset i

FrameV Perm …R D

Physical Address

Frame f Offset i



Sizing the Page Table

Logical Address

Page p Offset i

Number of bits n
specifies max size
of table, where
number of entries 
= 2n

Number of bits needed to address
physical memory in units of frames

Number of bits
specifies page/frame size

FrameV Perm …R D



Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

…

FrameV Perm …R D



Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

?

…

FrameV Perm …R D



How many entries (rows) will there be in this page 
table?

A. 212, because that’s how many the offset field 
can address

B. 220, because that’s how many the page field 
can address

C. 230, because that’s how many we need to 
address 1 GB

D. 232, because that’s the size of the entire 
address space



Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220 
= 1 M entries

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset



Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220 
= 1 M entries

How big is a 
frame?

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset



What will be the frame size, in bytes?

A. 212, because that’s how many bytes the offset field can 
address

B. 220, because that’s how many bytes the page field can address

C. 230, because that’s how many bytes we need to address 1 GB

D. 232, because that’s the size of the entire address space



Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220 
= 1 M entries

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset



How many bits do we need to store the 
frame number?

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

• A: 12 B: 18     C: 20     D: 30     E: 32

Page p: 20 bits Offset i: 12 bits

20 bits to address 220 
= 1 M entries

?

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D



Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

20 bits to address 220 
= 1 M entries

18 bits to address 
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

Size of an entry?

FrameV Perm …R D



Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

20 bits to address 220 
= 1 M entries

18 bits to address 
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

FrameV Perm …R D

Total table size?



Example of Sizing the Page Table

• 4 MB of bookkeeping for every process?
– 200 processes -> 800 MB just to store page tables…

Page p: 20 bits Offset i: 12 bits

20 bits to address 220 
= 1 M entries

18 bits to address 
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

Table size =
1 M x 4 = 4 MB

FrameV Perm …R D



Concerns

• Great, this page table idea solves a lot of those big problems 
we identified earlier, but…

1. We’re going to need a ton of memory just for page tables…

2. Wait, if we need to do a lookup in our page table, which is in 
memory, every time a process accesses memory…

– Isn’t that slowing down memory by a factor of 2?



Multi-Level Page Tables
(You’re not responsible for this. Take an OS class for the details.)

Logical Address

1st-level Page d Offset i

FrameV …R D

2nd-level Page p

FrameV …R DPoints to (base) frame 
containing 2nd-level 
page table

concat

Physical Address
Reduces memory usage SIGNIFICANTLY: 
only allocate page table space when we 
need it.  More memory accesses though…



Cost of Translation

• Each lookup costs another memory reference
– For each reference, additional references required

– Slows machine down by factor of 2 or more 

• Take advantage of locality
– Most references are to a small number of pages

– Keep translations of these in high-speed memory (a special fully-
associative cache for page translation) called the translation look-
aside buffer (TLB)



TLB: Translation Look-aside Buffer

• Fast memory keeps most recent translations

– Fully associative hardware lookup

• If page matches, get frame number
else wait for normal translation (in parallel)

page

Page p Offset i

Match
page

frame

Frame f Offset i



Problem Summary: Addressing

• General solution: OS must translate process’s 
VAS accesses to the corresponding physical 
memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a 
virtual address, the OS translates it to 
the corresponding physical address.

movl (address 0x74), %eax
OS must keep a table, for each 
process, to map VAS to PAS.
One entry per divided region.



Problem: Storage

• Where should process memories be placed?

– Topic: “Classic” memory management

• How does the compiler model memory?

– Topic: Logical memory model

• How to deal with limited physical memory?

– Topics: Virtual memory, paging



Recall “Storage Problem”

• We must keep multiple processes in memory, but how many?

– Lots of processes: they must be small

– Big processes: can only fit a few

• How do we balance this tradeoff?

Locality to the rescue!



Virtual Memory Implications

• Not all pieces need to be in memory
– Need only piece being referenced

– Other pieces can be on disk

– Bring pieces in only when needed

• Illusion: there is much more memory

• What’s needed to support this idea?
– A way to identify whether a piece is in memory

– A way to bring in pieces (from where, to where?)

– Relocation (which we have)



Virtual Memory based on Paging

• Before

– All virtual pages were in physical memory

VM PM

Page
Table



Virtual Memory based on Paging

• Now
– All virtual pages reside on disk

– Some also reside in physical memory (which ones?)

• Ever been asked about a swap partition on Linux?

VM PM

Page
Table

Memory
Hierarchy



Sample Contents of Page Table Entry

• Valid: is entry valid (page in physical memory)?

• Ref: has this page been referenced recently?

• Dirty: has this page been modified?

• Frame: what frame is this page in?

• Protection: what are the allowable operations?

– read/write/execute

Frame numberValid Ref Dirty Prot: rwx



Page Fault

• A page fault occurs when a process tries to access a page, but 
the page table entry is invalid.  That is, the page is not 
currently mapped to a physical frame.



A page fault occurs.  What must we do in response?

A. Find the faulting page on disk.

B. Evict a page from memory and write it to disk.

C. Bring in the faulting page and retry the operation.

D. Two of the above

E. All of the above



Address Translation and Page Faults

• Get entry: index page table with page number

• If valid bit is off, page fault

– Trap into operating system

– Find page on disk (kept in kernel data structure)

– Read it into a free frame

• may need to make room: page replacement

– Record frame number in page table entry, set valid

– Retry instruction (return from page-fault trap)



Page Faults are Expensive

• Disk: 5-6 orders magnitude slower than RAM

– Very expensive; but if very rare, tolerable

• Example

– RAM access time: 100 nsec

– Disk access time: 10 msec

– p = page fault probability

– Effective access time: 100  +  p × 10,000,000 nsec

– If p = 0.1%, effective access time = 10,100 nsec !



Handing faults from disk seems very 
expensive.  How can we get away with 
this in practice?

A. We have lots of memory, and it isn’t usually full.

B. We use special hardware to speed things up.

C. We tend to use the same pages over and over.

D. This is too expensive to do in practice!



Principle of Locality

• Not all pieces referenced uniformly over time

– Make sure most referenced pieces in memory

– If not, thrashing: constant fetching of pieces

• References cluster in time/space

– Will be to same or neighboring areas

– Allows prediction based on past



Page Replacement

• Goal: remove page(s) not exhibiting locality

• Page replacement is about

– which page(s) to remove

– when to remove them

• How to do it in the cheapest way possible

– Least amount of additional hardware

– Least amount of software overhead



Basic Page Replacement Algorithms

• FIFO: select page that is oldest

– Simple: use frame ordering

– Doesn’t perform very well (oldest may be popular)

• OPT: select page to be used furthest in future

– Optimal, but requires future knowledge

– Establishes best case, good for comparisons

• LRU: select page that was least recently used

– Predict future based on past; works given locality

– Costly: time-stamp pages each access, find least

• Goal: minimize replacements (maximize locality)



Summary

• We give each process a virtual address space to 
simplify process execution.

• OS maintains mapping of virtual address to 
physical memory location (e.g., in page table).
– One page table for every process

– TLB hardware helps to speed up translation

• Provides the abstraction of very large memory: 
not all pages need be resident in memory
– Bring pages in from disk on demand
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