
CS 31: Intro to Systems C Programming
L04: Binary Arithmetic

Vasanta Chaganti & Kevin Webb
Swarthmore College
September 14, 2023

Announcements

• Clickers will count for credit from this week

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

Agenda

Data representation & Binary Arithmetic
• number systems + conversion
• sizes, representation
• signedness
• binary arithmetic
• overflow rules

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Bits and Bytes

• Bit: a 0 or 1 value (binary)
– Hardware represents as two different voltages

• 1: the presence of voltage (high voltage)
• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …
(address) [0] [1] [2] …

Files

Sequence of bytes… nothing more, nothing less

Binary Digits (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit: 0 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

Let’s start with what we know…

• Digits 0-9

• Positional numbering

• Digits are composed to make larger numbers

• Known as Base 10 representation

Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

64025

Digit #0: 1’s place, “least significant digit”

Digit #4: “most significant digit”

Digit #1: 10’s place

Decimal: Base 10

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, represents the value:

[dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Binary: Base 2

• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits,
dn-1…d2d1d0, where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

Converting Binary to Decimal

Representation: 1 x 27 + 0 x 26 ... + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20

 128 + + 8 + 4 + 2 + 1

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Hexadecimal: Base 16

Indicated by prefixing number with 0x

A number, written as the sequence of N digits,

 dn-1…d2d1d0,

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, represents:

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

Generalizing: Base b

The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

in base b represents the value:

[dn-1 * bn-1] + [dn-2 * bn-2] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

Base 10: [dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

Other (common) number systems.

• Base 2: How data is stored in hardware.
• Base 8: Used to represent file permissions.
• Base 10: Preferred by people.
• Base 16: Convenient for representing memory addresses.
• Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits dn-1…d2d1d0 where d is in {0,1},
represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits dn-1…d2d1d0 where d is in {0,1},
represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]
 (Note: 162 = 256)

A. 397
B. 409
C. 419
D. 437
E. 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]
 (Note: 162 = 256)

A. 397
B. 409
C. 419
D. 437
E. 439

1*162 + 11*161 + 7*160 =

256 + 176 + 7 = 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Important Point…

• You can represent the same value in a variety of number
systems or bases.

• It’s all stored as binary in the computer.
– Presence/absence of voltage.

Hexadecimal: Base 16

• Fewer digits to represent same value
– Same amount of information!

• Like binary, the base is power of 2

• Each digit is a “nibble”, or half a byte.

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth of information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
 1 B 7

Hexadecimal ↔ Binary Conversion

• Bit patterns as base-16 numbers
• Convert binary to hexadecimal: by splitting into

groups of 4 bits each.

Example:

Bin 0011 1100 1010 1101 1011 0011
Hex 3 C A D B 3

0b0011 1100 1010 1101 1011 0011 = 0x3CADB3

Converting Decimal -> Binary

• Two methods:
– division by two remainder
– powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: example: D = 105 b0 = 1
 D = b D = 52 a1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D = D/2 D = 26 b2 = 0
 D = D/2 D = 13 b3 = 1
 D = D/2 D = 6 b4 = 0
 D = D/2 D = 3 b5 = 1
 D = D/2 D = 1 b6 = 1
 D = 0 (done) D = 0 b7 = 0

 105 = 01101001

Example: Converting 105

Method 2

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128
•

To convert 105:
– Find largest power of two that’s less than 105 (64)
– Subtract 64 (105 – 64 = 41), put a 1 in d6

– Subtract 32 (41 – 32 = 9), put a 1 in d5

– Skip 16, it’s larger than 9, put a 0 in d4

– Subtract 8 (9 – 8 = 1), put a 1 in d3

– Skip 4 and 2, put a 0 in d2 and d1

– Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

1 01 1 0 0 1

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

1 0 1 1 0 0 1 0 1
 d8 d7 d6 d5 d4 d3 d2 d1 d0

357 – 256 = 101
101 – 64 = 37

37 – 32 = 5
5 – 4 = 1

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

We can always add 0’s to the front of a number without changing it:

10110= 010110 = 00010110 = 0000010110

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Unsigned Integers

Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a
finite storage space we cannot
represent an infinite number of
values!

Unsigned Integers

Suppose we had one byte
• Can represent 28 (256) values
• If unsigned (strictly non-negative):
 0 – 255

252 = 11111100

253 = 11111101
254 = 11111110
255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1
 0110 6 1100 12
 + 0100 + 4 + 1010 +10
 1010 10 1 0110 6
 ^carry out

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1
 0110 6 1100 12
 + 0100 + 4 + 1010 +10
 1010 10 1 0110 6
 ^no carry out ^carry out

Four bits give us range: 0 - 15 Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

-1

-127 (11111111)

-127

-1 (11111111)

A B

C: Put them somewhere else.

0 0

Suppose we want to support signed values (positive and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

Suppose we want to support signed values (positive and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A: signed
magnitude

B: Two’s
complement

C: Put them somewhere else.

NOT USED: Signed Magnitude Representation (for 4 bit values)

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a number) is very simple!

For one byte:
 0 = 00000000
 What about 10000000?

Major con: Two ways to represent zero!

This is not what we do in
present day systems

0

-1

-127 (11111111)

A: signed
magnitude

Two’s Complement Representation (for four bit values)

• Borrow nice property
from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)
• 128 negative values (-1 to -128)

Used
Today

Two’s Complement

• Only one value for zero

• With N bits, can represent the range:
– -2N-1 to 2N-1 – 1

• Most significant (first) bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:
 1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers are stored using two’s
complement! This is the standard!

Two’s Compliment

Each two’s compliment number is now:
 [-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the first digit.
This is why first digit tells us negative vs. positive.

(The other digits are unchanged and carry the same meaning as unsigned.)

If we interpret 11001 as a two’s complement number,
what is the value in decimal?

Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25

If we interpret 11001 as a two’s complement number,
what is the value in decimal?

Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7 -16 + 8 + 1 = -7

C. -9

D. -25

“If we interpret…”

• What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12 (%u)
• …as signed (two’s complement), 4-bit value: -4 (%d)

• …as an 8-bit value: 12
(i.e., 00001100)

Two’s Complement Negation

• To negate a value x, we want to find y such that x + y = 0.

• For N bits, y = 2N - x 0

-127

-1 1

127

-128

Negation Example (8 bits)

• For N bits, y = 2N - x
• Negate 00000010 (2)
– 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
– Put -2 where 254 would be

if wheel was unsigned.
– 254 in binary is 11111110

Given 11111110, it’s 254 if interpreted as
unsigned and -2 interpreted as signed.

unsigned

128

254
255 0

0

-127

-1 1

127
-128

-2

signed

Negation Shortcut

• A much easier, faster way to negate:
– Flip the bits (0’s become 1’s, 1’s become 0’s)
– Add 1

• Negate 00101110 (46)
– 28 - 46 = 256 - 46 = 210
– 210 in binary is 11010010

46: 00101110

Flip the bits: 11010001

Add 1

+ 1

-46: 11010010

Decimal to Two’s Complement with 8-bit values
(high-order bit is the sign bit)

For positive values, use same algorithm as unsigned
For example, 6: 6 - 4 = 2 (4:22)
 2 – 2 = 0 (2:21): 00000110

For negative values:
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

For example, -3:
 3: 00000011
 negate: 11111100+1 = 11111101 = -3

What is the 8-bit, two’s complement representation for -7?

For negative values:
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

A. 11111001
B. 00000111
C. 11111000
D. 11110011

What is the 8-bit, two’s complement representation for -7?

For negative values:
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

A. 11111001
B. 00000111
C. 11111000
D. 11110011

-7 = (1) 7: 00000111
 (2) negate: 11111000 + 1 = 11111001

Addition & Subtraction

• Addition is the same as for unsigned
– One exception: different rules for overflow
– Can use the same hardware for both

• Subtraction is the same operation as addition
– Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
– ~7 is shorthand for “flip the bits of 7”

Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
 6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->
input 2 --> possible bit flipper --> ADD CIRCUIT ---> result
 possible +1 input-------->

Let’s call this possible +1 input: “Carry in”
 (0: on add, 1: on subtract)

4-bit signed Examples:

Subtraction via Addition:
– a-b is same as a + ~b + 1

 Subtraction: flip bits and add 1
 3 - 6 = 0011
 1001 (6: 0110 ~6: 1001)

 + 1

 1101 = -3

Addition:
 3 + -6 = 0011

 + 1010

 1101 = -3

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

 13 - 1 =

Signed subtraction: flip bits and add 1

 -3 - 1 =

A. 1100 & 1100
B. 1100 & 1010
C. 1010 & 1010
D.1001 & 1100

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

 13 - 1 = 1101
 1110 (1: 0001 ~1: 1110)
 + 1
 1 1100 = 12

Signed subtraction: flip bits and add 1

 -3 - 1 = 1101
 1110
 + 1
 1 1100 = -4

Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone

If we add a positive number and a negative number, will
we have overflow? (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone

If we add a positive number and a negative number, will
we have overflow? (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone

Two’s Complement Overflow For Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result

 3+4=7 -2+-3=-5
 0011 1110
 +0100 +1101
 0111 1 1011

no overflow

0

-127

-1 1

127

-128

Two’s Complement Overflow For Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result sign of operands ≠ sign of result

 3+4=7 -2+-3=-5 4+7=11 -6-8=-14

 0011 1110 0100 1010
 +0100 +1101 +0111 +1000
 0111 1 1011 1011 1 0010

no overflow overflow

Recall: Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
 6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->
input 2 --> possible bit flipper --> ADD CIRCUIT ---> result
 possible +1 input-------->

Let’s call this possible +1 input: “Carry in”
 (0: on add, 1: on subtract)

How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100
 9 + 6 = 1001 + 0110 + 0 = 0 1111

 3 + 6 = 0011 + 0110 + 0 = 0 1001

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011
 3 - 6 = 0011 + 1001 + 1 = 0 1101

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
 9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15

 3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3
 3 - 6 = 0011 + 1001 + 1 = 0 1101 = 13

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

Notice a Pattern?

How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
 9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15

 3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3
 3 - 6 = 0011 + 1001 + 1 = 0 1101 = 13

(-3)

(-6)

A. 1
B. 2
C. 3
D. 4
E. 5

carry-in carry-out

Notice a Pattern?

Overflow Rule Summary

Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
 0 0 0

 0 1 1
 1 0 1
 1 1 0

Two’s Complement Overflow For Subtraction

Subtraction Overflow Rules Summarized:
• Overflow occurs IFF the sign bits of the subtraction operands are

different, and the sign bit of the Result and Subtrahend are the same
as shown below:
– Minuend - Subtrahend = Result
– If positive – negative = negative (overflow)
– If negative – positive = positive (overflow)

Two’s Complement Overflow For Subtraction
– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a positive + positive.

– If this sum does not result in a positive value we have an overflow

Minuend Subtrahend Result

no overflow overflow

Subtrahend and Result have different sign bits

2-(-3)=5
 0010
 -1110

3-(-4)=7
 0011
 -1100

0010
 +0011
 0101

0011
 +0100
 0111

2-(-6)=8
 0010
 -1010

3-(-7)=10
 0011
 -1001

0010
 +0110
 1000(-8)

0011
 +0111
 1010(-6)

Subtrahend and Result have the same sign bits

Two’s Complement Overflow For Subtraction
– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow
• Intuition: We know a negative – positive number is equivalent to a negative + negative number.

– If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

no overflow overflow

Subtrahend and Result have different sign bits Subtrahend and Result have the same sign bits

-2-(3)=-5
 1110
 -0011

1110
 +1101
1 1011(-5)

-3-(4)=-7
 1101
 -0100

1101
 +1100
1 1001(-7)

-2-(7)=-9
 1110
 -0111

-4-(7)=-11
 1100
 -0111

1110
 +1001
1 0111(7)

1100
 +0111
1 0011(-6)

Two’s Complement Overflow For Subtraction

– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a positive + positive.

– If this sum does not result in a positive value we have an overflow

– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow
• Intuition: We know a negative – positive number is equivalent to a negative + negative number.

– If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

Minuend Subtrahend Result

Overflow Rule Summary

• Signed overflow:
– The sign bits of operands are the same, but the sign bit of result is different.

• Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
 0 0 0
 0 1 1
 1 0 1
 1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Sign Extension
When combining signed values of different sizes, expand the smaller value to equivalent
larger size:

char y = 2, x = -13;
short z = 10;

 z = z + y; z = z + x;

0000000000001010 0000000000000101
+ 00000010 + 11110011
0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get same numeric value in larger number of
bytes.

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?
 0111 ---> 0000 0111 obviously still 7
 1010 ---> 1111 1010 is this still -6?

 -128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

• For these, it doesn’t matter how the bits are interpreted
(signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting

Bit-wise Operators

• Bit operands, Bit result (interpret as appropriate for the context)
 & (AND) | (OR) ~(NOT) ^(XOR)

 A B A & B A | B ~A A ^ B
 0 0 0 0 1 0
 0 1 0 1 1 1
 1 0 0 1 0 1
 1 1 1 1 0 0

 01101010 01010101 10101010 ~10101111
 & 10111011 |b00100001 ^ 01101001 01010000
 00101010 b01110101 11000011

More Operations on Bits (Shifting)

Bit-shift operators: << left shift, >> right shift

 01010101 << 2 is 01010100
 2 high-order bits shifted out
 2 low-order bits filled with 0
 01101010 << 4 is 10100000
 01010101 >> 2 is 00010101
 01101010 >> 4 is 00000110

 10101100 >> 2 is 00101011 (logical shift)
 or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Try some 4-bit examples:

bit-wise operations:
• 0101 & 1101
• 0101 | 1101

Logical (unsigned) bit shift:
• 1010 << 2
• 1010 >> 2

Arithmetic (signed) bit shift:
• 1010 << 2
• 1010 >> 2

Try some 4-bit examples:

bit-wise operations:
• 0101 & 1101 = 0101
• 0101 | 1101 = 1101

Logical (unsigned) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 0010

Arithmetic (signed) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 1110

Additional Info: (not assessable) Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?

Slide 92

Additional Info: (not assessable) Floating Point Representation

1 bit for sign sign | exponent | fraction |
 8 bits for exponent
 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010
 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

You’re not expected to memorize this

Summary

• Images, Word Documents, Code, and Video can represented in bits.

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2N unique values

• A number is written as a sequence of digits: in the decimal base system

– [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

– For any base system:

– [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

– Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit
value is 255.

– Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

