CS 31: Intro to Systems
Binary Arithmetic

Vasanta Chaganti & Kevin Webb
Swarthmore College
September 14, 2023
Reading Quiz
So far: Unsigned Integers

• With N bits, we can represent values: 0 to $2^n - 1$

• We can always add 0’s to the front of a number without changing it:

\[10110 \quad = \quad 010110 \quad = \quad 00010110 \quad = \quad 0000010110 \]

• 1 byte: char, \underline{unsigned} char
• 2 bytes: short, \underline{unsigned} short
• 4 bytes: int, \underline{unsigned} int, float
• 8 bytes: long long, \underline{unsigned} long long, double
• 4 or 8 bytes: long, \underline{unsigned} long
Unsigned Integers

• Suppose we had one byte
 • Can represent 2^8 (256) values
 • If unsigned (strictly non-negative): $0 – 255$

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
Unsigned Integers

• Suppose we had one byte
 • Can represent 2^8 (256) values
 • If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111

Car odometer “rolls over”.

Any time we are dealing with a finite storage space we cannot represent an infinite number of values!
Unsigned Integers

• Suppose we had one byte
 • Can represent 2^8 (256) values
 • If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111

What if we add one more?

Modular arithmetic: Here, all values are modulo 256.
Unsigned Addition (4-bit)

• Addition works like grade school addition:

\[
\begin{array}{c}
1 \\
0110 & 6 \\
+ 0100 & + 4 \\
\hline
1010 & 10 \\
\end{array}
\]

Four bits give us range: 0 - 15
Unsigned Addition (4-bit)

- Addition works like grade school addition:

\[
\begin{array}{cccc}
& 1 & & \\
 0110 & 6 & & 1100 & 12 \\
+ 0100 & + 4 & & + 1010 & + 10 \\
1010 & 10 & & 1 0110 & 6 \\
\end{array}
\]

^carry out

Four bits give us range: 0 - 15

Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values
Suppose we want to support signed values too (positive and negative). Where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.
Not Used: Signed Magnitude

• One bit (usually left-most) signals:
 • 0 for positive
 • 1 for negative

For one byte:
 1 = 00000001
 -1 = 10000001

Pros: Negation is very simple!
Not Used: Signed Magnitude

- One bit (usually left-most) signals:
 - 0 for positive
 - 1 for negative

For one byte:

$0 = 00000000$

$-0? = 10000000$

Major con: Two ways to represent zero.
Used Today: Two’s Complement

• Borrow nice property from number line:

```
-1 0 1
```

Only one instance of zero!
Implies: -1 and 1 on either side of it.

• For an 8 bit range we can express 256 unique values:
 • 128 non-negative values (0 to 127)
 • 128 negative values (-1 to -128)
Two’s Complement

• Only one value for zero

• With N bits, can represent the range:
 • -2^{N-1} to $2^{N-1} - 1$

• **Most significant** (first) bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:

 \[
 1 = 00000001, \quad -1 = 11111111
 \]

From now on, unless we explicitly say otherwise, we’ll assume all integers are stored using two’s complement! This is the standard!
Two’s Compliment

• Each two’s compliment number is now:
 \[-2^{n-1}d_{n-1} + 2^{n-2}d_{n-2} + \ldots + 2^1d_1 + 2^0d_0\]

Note the **negative sign** on just the first digit.
This is why first digit tells us negative vs. positive.

(The other digits are unchanged and carry the same meaning as unsigned.)
If we interpret 11001 as a two’s complement number, what is the value in decimal?

• Each two’s compliment number is now:
 \[-2^{n-1}d_{n-1} + 2^{n-2}d_{n-2} + \cdots + 2^1d_1 + 2^0d_0\]

A. -2

B. -7

C. -9

D. -25
“If we interpret…”

• What is the decimal value of 1100?

• ...as unsigned, 4-bit value: 12 (%u)
• ...as signed (two’s complement), 4-bit value: -4 (%d)

• ...as an 8-bit value: 12
 (i.e., 00001100)
Two’s Complement Negation

• To negate a value x, we want to find y such that $x + y = 0$.

• For N bits, $y = 2^N - x$
Negation Example (8 bits)

• For \(N \) bits, \(y = 2^N - x \)

• Negate 00000010 (2)
 • \(2^8 - 2 = 256 - 2 = 254 \)

• Our wheel only goes to 127!
 • Put -2 where 254 would be if wheel was unsigned.
 • 254 in binary is 11111110

Given 11111110, it’s 254 if interpreted as unsigned and -2 interpreted as signed.
Negation Shortcut

• A much **easier, faster** way to negate:
 • Flip the bits (0’s become 1’s, 1’s become 0’s)
 • Add 1

• **Negate 00101110 (46)**
 • $2^8 - 46 = 256 - 46 = 210$
 • 210 in binary is 11010010

```
46:       00101110
Flip the bits: 11010001
Add 1
+ 1
-46:      11010010
```
Decimal to Two’s Complement with 8-bit values
(high-order bit is the sign bit)

For positive values, use same algorithm as unsigned
For example, 6:
6 - 4 = 2 (4\cdot2^2)
2 - 2 = 0 (2\cdot2^1): 00000110

For negative values:
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

For example, -3:
3: 00000011
negate: 11111100+1 = 11111101 = -3
What is the 8-bit, two’s complement representation for -7?

For negative values:
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

A. 11111001
B. 00000111
C. 11111000
D. 11110011
Addition & Subtraction

• Addition is the same as for unsigned
 • One exception: different rules for overflow
 • Can use the same hardware for both

• Subtraction is the same operation as addition
 • Just need to negate the second operand...

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
 • ~7 is shorthand for “flip the bits of 7”
Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
\[6 - 7 = 6 + \sim 7 + 1 \]

Let’s call this possible +1 input: “Carry in”
(0: on add, 1: on subtract)
4-Bit Subtraction Example

Subtraction via addition: $a - b$ is same as $a + \sim b + 1$

Subtraction: flip bits and add 1

\[
\begin{array}{c}
3 - 6 = \text{0011} \\
\text{1001} \quad \text{(6: 0110 \sim 6: 1001)} \\
+ \text{1} \\
\text{1101} = -3
\end{array}
\]

Equivalent addition: don’t flip bits or add 1

\[
\begin{array}{c}
3 + -6 = \text{0011} \\
+ \text{1010} \\
\text{1101} = -3
\end{array}
\]
By switching to two’s complement, have we solved this value “rolling over” (overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.
Overflow, Revisited

- Signed
 -0
 -1
 0
 1
 127
 128
 -127
 -128

- Unsigned
 -1
 0
 1
 64
 128
 192

Danger Zone
If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)

A. Always
B. Sometimes
C. Never
Two’s Complement Overflow For Addition

- **Addition Overflow**: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

\[
\text{sign of operands} = \text{sign of result}
\]
Two’s Complement Overflow For Addition

- **Addition Overflow**: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

<table>
<thead>
<tr>
<th>Sign of Operands = Sign of Result</th>
<th>Sign of Operands ≠ Sign of Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Overflow</td>
<td>Overflow</td>
</tr>
<tr>
<td>3 + 4 = 7</td>
<td>4 + 7 = 11</td>
</tr>
<tr>
<td>0111</td>
<td>0100</td>
</tr>
<tr>
<td>-2 + -3 = -5</td>
<td>-6 + -8 = -14</td>
</tr>
<tr>
<td>1110</td>
<td>1010</td>
</tr>
<tr>
<td>+ 0100 + 1101</td>
<td>+ 0111 + 1000</td>
</tr>
<tr>
<td>0111 1 1011</td>
<td>1011 1 0010</td>
</tr>
</tbody>
</table>

(-5) (2)
Two’s Complement Overflow For Subtraction

• Rule 1:

<table>
<thead>
<tr>
<th>Minuend</th>
<th>Subtrahend</th>
<th>Result</th>
</tr>
</thead>
</table>

- Positive operand - Negative operand = Positive Result: No Overflow
- Positive operand - Negative operand = Negative Result: Overflow
- **Intuition:** We know a positive – negative is equivalent to a positive + positive. If this sum does not result in a positive value we have an overflow

• Rule 2:

<table>
<thead>
<tr>
<th>Minuend</th>
<th>Subtrahend</th>
<th>Result</th>
</tr>
</thead>
</table>

- Negative operand - Positive operand = Negative Result: No Overflow
- Negative operand - Positive operand = Positive Result: Overflow
- **Intuition:** We know a negative – positive number is equivalent to a negative + negative number. If this sum does not result in a negative value we have an overflow
Two’s Complement Overflow For Subtraction

• Rule 1:
 - **Positive operand** - **Negative operand** = Positive Result: No Overflow
 - **Positive operand** - **Negative operand** = Negative Result: Overflow
 - **Intuition**: We know a positive – negative is equivalent to a positive + positive. If this sum does not result in a positive value we have an overflow

Subtrahend and Result have **different sign bits**
- **no overflow**
- \(2 - (-3) = 5\)
 - Minuend: 0010
 - Subtrahend: 1110
 - Result: 0010 + 0011 = 0101

Subtrahend and Result have the **same sign bits**
- **overflow**
- \(3 - (-7) = 10\)
 - Minuend: 0011
 - Subtrahend: 1001
 - Result: 0011 + 0111 = 1010

\(2 - (-6) = 8\)
- Minuend: 0010
- Subtrahend: 1010
- Result: 0010 + 0110 = 1000

\(3 - (-7) = 10\)
- Minuend: 0011
- Subtrahend: 1001
- Result: 0011 + 0111 = 1010

\(2 - (-6) = 8\)
- Minuend: 0010
- Subtrahend: 1010
- Result: 0010 + 0110 = 1000

\(3 - (-7) = 10\)
- Minuend: 0011
- Subtrahend: 1001
- Result: 0011 + 0111 = 1010
Two’s Complement Overflow For Subtraction

Rule 2:

- Negative operand - Positive operand = Negative Result: No Overflow
- Negative operand - Positive operand = Positive Result: Overflow

Intuition: We know a negative – positive number is equivalent to a negative + negative number. If this sum does not result in a negative value we have an overflow.

<table>
<thead>
<tr>
<th>Subtrahend and Result have different sign bits</th>
<th>Subtrahend and Result have the same sign bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>no overflow</td>
<td>overflow</td>
</tr>
<tr>
<td>-2 - (3) = -5</td>
<td>-2 - (7) = -9</td>
</tr>
</tbody>
</table>
| \[\begin{array}{c}
1110 \\
-0011
\end{array} \] | \[\begin{array}{c}
1110 \\
-0111
\end{array} \] |
| **-3 - (4) = -7** | **-4 - (7) = -11** |
| \[\begin{array}{c}
1110 \\
+1101
\end{array} \] | \[\begin{array}{c}
1110 \\
+0111
\end{array} \] |
| **1 1011 (-5)** | **1 0011 (-7)** |
| **1 1001 (-7)** | **1 0011 (-6)** |
Two’s Complement Overflow For Subtraction

Subtraction Overflow Rules Summarized:

- Overflow occurs IFF the sign bits of the subtraction operands are different, and the sign bit of the Result and Subtrahend are the same as shown below:
 - Minuend - Subtrahend = Result
 - If positive – negative = negative (overflow)
 - If negative – positive = positive (overflow)

- Now that we have rules for two’s complement, let’s revisit unsigned numbers and formalize the overflow rules there!
Recall: Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

\[6 - 7 = 6 + \neg 7 + 1 \]

input 1 -------------------------------------
input 2 --> possible bit flipper --> ADD CIRCUIT --> result
possible +1 input-------->

Let’s call this possible +1 input: “Carry in”
(0: on add, 1: on subtract)
How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

<table>
<thead>
<tr>
<th>Operation</th>
<th>carry-in</th>
<th>carry-out</th>
</tr>
</thead>
</table>
| Addition (carry-in = 0) | \[\begin{array}{c}
9 + 11 = 1001 + 1011 + 0 = 10100 \\
9 + 6 = 1001 + 0110 + 0 = 01111 \\
3 + 6 = 0011 + 0110 + 0 = 01001 \\
\end{array} \right|
| Subtraction (carry-in = 1) | \[\begin{array}{c}
6 - 3 = 0110 + 1100 + 1 = 10011 \\
3 - 6 = 0011 + 1001 + 1 = 01101 \\
\end{array} \right|

A. 1
B. 2
C. 3
D. 4
E. 5
How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (valid range 0 to 15):

<table>
<thead>
<tr>
<th>Addition (carry-in = 0)</th>
<th>carry-in</th>
<th>carry-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 + 11</td>
<td></td>
<td>1 0100 = 4</td>
</tr>
<tr>
<td>9 + 6</td>
<td></td>
<td>0 1111 = 15</td>
</tr>
<tr>
<td>3 + 6</td>
<td></td>
<td>0 1001 = 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subtraction (carry-in = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 3</td>
</tr>
<tr>
<td>3 - 6</td>
</tr>
</tbody>
</table>

A. 1
B. 2
C. 3
D. 4
E. 5

Pattern?
Overflow Rule Summary

- **Signed overflow:**
 - The sign bits of operands are the same, but the sign bit of result is different.

- **Unsigned: overflow**
 - The carry-in bit is different from the carry-out.

<table>
<thead>
<tr>
<th>C_{in}</th>
<th>C_{out}</th>
<th>C_{in} XOR C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

So far, all arithmetic on values that were the same size. What if they’re different?
Sign Extension

• When combining signed values of different sizes, expand the smaller value to equivalent larger size:

```c
char y = 2, x = -13;
short z = 10;

z = z + y;                z = z + x;
```

```
0000000000001010          0000000000000101
0000000000000101
+ 00000010 + 1110011
0000000000000010          1111111111110011
```

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.
Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

0111 ---> 0000 0111 obviously still 7
1010 ---> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!
Operations on Bits

• For these, it doesn’t matter how the bits are interpreted (signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting
Bit-wise Operators

- Bit operands, Bit result (interpret as appropriate for the context)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>& (AND)</th>
<th></th>
<th></th>
<th>(OR)</th>
<th></th>
<th>~ (NOT)</th>
<th></th>
<th>^ (XOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A & B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>~ A</td>
<td>A ^ B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
01101010 & 01010101 & 10101010 & \sim 10101111 \\
\& 10111011 & | 00100001 & ^ 01101001 & 01010000 \\
00101010 & 01110101 & 11000011
\end{align*}
\]
More Operations on Bits (Shifting)

- Bit-shift operators: \ll left shift, \gg right shift

01010101 \ll 2 is 01010100
 2 high-order bits shifted out
 2 low-order bits filled with 0

01101010 \ll 4 is 10100000
01010101 \gg 2 is 00010101
01101010 \gg 4 is 00000110

10101100 \gg 2 is 00101011 (logical shift)
 or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type: signed: arithmetic, unsigned: logical
Try some 4-bit examples:

bit-wise operations:
• 0101 & 1101
• 0101 | 1101

Logical (unsigned) bit shift:
• 1010 << 2
• 1010 >> 2

Arithmetic (signed) bit shift:
• 1010 << 2
• 1010 >> 2
Up Next

• Circuits
 • How can we build hardware to perform all these operations on bits?