
CS 31: Intro to Systems
Binary Arithmetic

Vasanta Chaganti & Kevin Webb

Swarthmore College

September 14, 2023

Reading Quiz

So far: Unsigned Integers

• With N bits, we can represent values: 0 to 2n-1

• We can always add 0’s to the front of a number without changing it:

10110 = 010110 = 00010110 = 0000010110

• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a finite
storage space we cannot represent
an infinite number of values!

Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)
Addition

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1

 0110 6 1100 12

 + 0100 + 4 + 1010 +10

 1010 10 1 0110 6

 ^carry out

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1

 0110 6 1100 12

 + 0100 + 4 + 1010 +10

 1010 10 1 0110 6

 ^carry out

Four bits give us range: 0 - 15
Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

Suppose we want to support signed values too (positive and
negative). Where should we put -1 and -127 on the circle?
Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A B

C: Put them somewhere else.

Not Used: Signed Magnitude

• One bit (usually left-most) signals:
• 0 for positive

• 1 for negative

For one byte:

 1 = 00000001

 -1 = 10000001

Pros: Negation is very simple!

Not Used: Signed Magnitude

• One bit (usually left-most) signals:
• 0 for positive

• 1 for negative

For one byte:

 0 = 00000000

 -0? = 10000000

Major con: Two ways to represent zero.

Used Today: Two’s Complement

• Borrow nice property from number line:

• For an 8 bit range we can express 256 unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

Two’s Complement

• Only one value for zero

• With N bits, can represent the range:
• -2N-1 to 2N-1 – 1

• Most significant (first) bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:

 1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers are stored using two’s
complement! This is the standard!

Two’s Compliment

• Each two’s compliment number is now:

[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the first digit.
This is why first digit tells us negative vs. positive.

(The other digits are unchanged and carry the same meaning as unsigned.)

If we interpret 11001 as a two’s complement
number, what is the value in decimal?

• Each two’s compliment number is now:

[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25

“If we interpret…”

• What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12 (%u)

• …as signed (two’s complement), 4-bit value: -4 (%d)

• …as an 8-bit value: 12
(i.e., 00001100)

Two’s Complement Negation

• To negate a value x, we want to find y such that x + y = 0.

• For N bits, y = 2N - x
0

-127

-1 1

127

-128

Negation Example (8 bits)

• For N bits, y = 2N - x

• Negate 00000010 (2)
• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
• Put -2 where 254 would be

if wheel was unsigned.

• 254 in binary is 11111110

Given 11111110, it’s 254 if interpreted as
unsigned and -2 interpreted as signed.

unsigned

128

254
255

0

0

-127

-1 1

127
-128

-2

signed

Negation Shortcut

• A much easier, faster way to negate:
• Flip the bits (0’s become 1’s, 1’s become 0’s)

• Add 1

• Negate 00101110 (46)
• 28 - 46 = 256 - 46 = 210

• 210 in binary is 11010010

46: 00101110

Flip the bits: 11010001

Add 1

+ 1

-46: 11010010

Decimal to Two’s Complement with 8-bit values
(high-order bit is the sign bit)

For positive values, use same algorithm as unsigned
For example, 6: 6 - 4 = 2 (4:22)

 2 – 2 = 0 (2:21): 00000110

For negative values:
1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation

For example, -3:

 3: 00000011

 negate: 11111100+1 = 11111101 = -3

What is the 8-bit, two’s complement
representation for -7?
For negative values:

1. convert the equivalent positive value to binary

2. then negate binary to get the negative representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

Addition & Subtraction

• Addition is the same as for unsigned
• One exception: different rules for overflow

• Can use the same hardware for both

• Subtraction is the same operation as addition
• Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
• ~7 is shorthand for “flip the bits of 7”

Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

 possible +1 input-------->

Let’s call this possible +1 input: “Carry in”
 (0: on add, 1: on subtract)

4-Bit Subtraction Example

Subtraction via addition: a - b is same as a + ~b + 1

Subtraction: flip bits and add 1
 3 - 6 = 0011

 1001 (6: 0110 ~6: 1001)

 + 1

 1101 = -3

Equivalent addition: don’t flip bits or add 1

 3 + -6 = 0011

 + 1010

 1101 = -3

By switching to two’s complement, have
we solved this value “rolling over”
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128

Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone

If we add a positive number and a negative number,
will we have overflow? (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone

Two’s Complement Overflow For Addition

• Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

• Not enough bits to store result!

sign of operands = sign of result

 3+4=7 -2+-3=-5

 0011 1110

 +0100 +1101

 0111 1 1011

no overflow

0

-127

-1 1

127

-128

Two’s Complement Overflow For Addition

• Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

• Not enough bits to store result!

sign of operands = sign of result sign of operands ≠ sign of result

 3+4=7 -2+-3=-5 4+7=11 -6-8=-14

 0011 1110 0100 1010

 +0100 +1101 +0111 +1000

 0111 1 1011 1011 1 0010

 (-5) (2)

no overflow overflow

Two’s Complement Overflow For Subtraction

• Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a

positive + positive. If this sum does not result in a positive value we have an overflow

• Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow
• Intuition: We know a negative – positive number is equivalent to a

negative + negative number. If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

Minuend Subtrahend Result

Two’s Complement Overflow For Subtraction

• Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a

positive + positive. If this sum does not result in a positive value we have an overflow

Minuend Subtrahend Result

no overflow overflow
Subtrahend and Result have different sign bits

2-(-3)=5

 0010

 -1110

3-(-4)=7

 0011

 -1100

0010

 +0011

 0101

0011

 +0100

 0111

2-(-6)=8

 0010

 -1010

3-(-7)=10

 0011

 -1001

0010

 +0110

 1000(-8)

0011

 +0111

 1010(-6)

Subtrahend and Result have the same sign bits

Two’s Complement Overflow For Subtraction

• Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow
• Intuition: We know a negative – positive number is equivalent to a

negative + negative number. If this sum does not result in a negative value we have an overflow

Minuend Subtrahend Result

no overflow overflow
Subtrahend and Result have different sign bits Subtrahend and Result have the same sign bits

-2-(3)=-5

 1110

 -0011

-3-(4)=-7

 1101

 -0100

1110

 +1101

1 1011(-5)

1101

 +1100

1 1001(-7)

-2-(7)=-9

 1110

 -0111

-4-(7)=-11

 1100

 -0111

1110

 +1001

1 0111(7)

1100

 +0111

1 0011(-6)

Two’s Complement Overflow For Subtraction

Subtraction Overflow Rules Summarized:

• Overflow occurs IFF the sign bits of the subtraction operands are
different, and the sign bit of the Result and Subtrahend are the same
as shown below:
• Minuend - Subtrahend = Result

• If positive – negative = negative (overflow)

• If negative – positive = positive (overflow)

• Now that we have rules for two’s complement, let’s revisit unsigned
numbers and formalize the overflow rules there!

Recall: Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

 possible +1 input-------->

Let’s call this possible +1 input: “Carry in”
 (0: on add, 1: on subtract)

How many of these unsigned
operations have overflowed?
Interpret these as 4-bit unsigned values (valid range 0 to 15):

 carry-in carry-out

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100

 9 + 6 = 1001 + 0110 + 0 = 0 1111

 3 + 6 = 0011 + 0110 + 0 = 0 1001

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011

 3 - 6 = 0011 + 1001 + 1 = 0 1101

A. 1

B. 2

C. 3

D. 4

E. 5

(-3)

(-6)

How many of these unsigned
operations have overflowed?
Interpret these as 4-bit unsigned values (valid range 0 to 15):

 carry-in carry-out

Addition (carry-in = 0)

 9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4

 9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15

 3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)

 6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3

 3 - 6 = 0011 + 1001 + 1 = 0 1101 = 13

A. 1

B. 2

C. 3

D. 4

E. 5

Pattern?

(-3)

(-6)

Overflow Rule Summary

• Signed overflow:
• The sign bits of operands are the same, but the sign bit of result is different.

• Unsigned: overflow
• The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
 0 0 0

 0 1 1

 1 0 1

 1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Sign Extension

• When combining signed values of different sizes, expand the smaller value to equivalent
larger size:

char y = 2, x = -13;

short z = 10;

 z = z + y; z = z + x;

0000000000001010 0000000000000101

+ 00000010 + 11110011

0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get same numeric value in larger number of
bytes.

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

 0111 ---> 0000 0111 obviously still 7

 1010 ---> 1111 1010 is this still -6?

 -128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

• For these, it doesn’t matter how the bits are interpreted
(signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting

Bit-wise Operators

• Bit operands, Bit result (interpret as appropriate for the context)

 & (AND) | (OR) ~(NOT) ^(XOR)

 A B A & B A | B ~A A ^ B

 0 0 0 0 1 0

 0 1 0 1 1 1

 1 0 0 1 0 1

 1 1 1 1 0 0

 01101010 01010101 10101010 ~10101111

 & 10111011 | 00100001 ^ 01101001 01010000

 00101010 01110101 11000011

More Operations on Bits (Shifting)

• Bit-shift operators: << left shift, >> right shift

 01010101 << 2 is 01010100

 2 high-order bits shifted out

 2 low-order bits filled with 0

 01101010 << 4 is 10100000

 01010101 >> 2 is 00010101

 01101010 >> 4 is 00000110

 10101100 >> 2 is 00101011 (logical shift)

 or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit

C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Try some 4-bit examples:

bit-wise operations:

• 0101 & 1101

• 0101 | 1101

Logical (unsigned) bit shift:

• 1010 << 2

• 1010 >> 2

Arithmetic (signed) bit shift:

• 1010 << 2

• 1010 >> 2

Up Next

• Circuits
• How can we build hardware to perform all these operations on bits?

	Slide 1: CS 31: Intro to Systems Binary Arithmetic
	Slide 2: Reading Quiz
	Slide 7: So far: Unsigned Integers
	Slide 8: Unsigned Integers
	Slide 9: Unsigned Integers
	Slide 10: Unsigned Integers
	Slide 11: Unsigned Addition (4-bit)
	Slide 12: Unsigned Addition (4-bit)
	Slide 13: Suppose we want to support signed values too (positive and negative). Where should we put -1 and -127 on the circle? Why?
	Slide 15: Not Used: Signed Magnitude
	Slide 16: Not Used: Signed Magnitude
	Slide 17: Used Today: Two’s Complement
	Slide 18: Two’s Complement
	Slide 19: Two’s Compliment
	Slide 20: If we interpret 11001 as a two’s complement number, what is the value in decimal?
	Slide 22: “If we interpret…”
	Slide 23: Two’s Complement Negation
	Slide 24: Negation Example (8 bits)
	Slide 25: Negation Shortcut
	Slide 26: Decimal to Two’s Complement with 8-bit values (high-order bit is the sign bit)
	Slide 27: What is the 8-bit, two’s complement representation for -7?
	Slide 29: Addition & Subtraction
	Slide 30: Subtraction Hardware
	Slide 31: 4-Bit Subtraction Example
	Slide 32: By switching to two’s complement, have we solved this value “rolling over” (overflow) problem?
	Slide 34: Overflow, Revisited
	Slide 35: If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)
	Slide 37: Two’s Complement Overflow For Addition
	Slide 38: Two’s Complement Overflow For Addition
	Slide 39: Two’s Complement Overflow For Subtraction
	Slide 40: Two’s Complement Overflow For Subtraction
	Slide 41: Two’s Complement Overflow For Subtraction
	Slide 42: Two’s Complement Overflow For Subtraction
	Slide 43: Recall: Subtraction Hardware
	Slide 44: How many of these unsigned operations have overflowed?
	Slide 45: How many of these unsigned operations have overflowed?
	Slide 47: Overflow Rule Summary
	Slide 49: Sign Extension
	Slide 50: Let’s verify that this works
	Slide 51: Operations on Bits
	Slide 52: Bit-wise Operators
	Slide 53: More Operations on Bits (Shifting)
	Slide 54: Try some 4-bit examples:
	Slide 56: Up Next

