CS 31: Intro to Systems C Programming
L03: Data representation

Vasanta Chaganti & Kevin Webb
Swarthmore College
September 12, 2023
Announcements

• HW1 is due Thursday before class
 • up to groups of four
 • invitations sent from gradescope

• Lab 1 is due Thursday, 11.59 PM

• Clickers will count for credit from this week
Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until
 blue light flashes (2secs)
2. Press the frequency code: AA
 vote status light will indicate success
Agenda

Data representation
- number systems + conversion
- data types, storage
- sizes, representation
- signedness
Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Operating system
Manage resources

Complex devices
Compute & I/O
Data Storage

• Lots of technologies out there:
 – Magnetic (hard drive, floppy disk)
 – Optical (CD / DVD / Blu-Ray)
 – Electronic (RAM, registers, ...)

• Focus on electronic for now
 – We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
 – Voltage present
 – Voltage absent
Bits and Bytes

• **Bit**: a 0 or 1 value (binary)
 – **HW** represents as two different voltages
 • 1: the presence of voltage *(high voltage)*
 • 0: the absence of voltage *(low voltage)*

• **Byte**: 8 bits, the **smallest addressable unit**
 Memory: 01010101 10101010 00001111 ...
 (address) [0] [1] [2] ...

• **Other names**:
 – 4 bits: Nibble
 – “Word”: Depends on system, often 4 bytes
Files

Sequence of bytes... nothing more, nothing less
Binary Digits (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, ..., 110, 111)
How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, ..., 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.
How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, ..., 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.
How many values?

1 bit: 0 1
How many values?

1 bit:

2 bits:
How many values?

1 bit:

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

2 bits:

```
0 0 0 0 1 0 1 1 1
```

3 bits:

```
0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1
```
How many values?

1 bit:

2 bits:

3 bits:

4 bits:

N bits: 2^N values
C types and their (typical!) sizes

- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

```c
unsigned long v1;
short s1;
long long ll;
```

// prints out number of bytes
printf("%lu %lu %lu\n", sizeof(v1), sizeof(s1), sizeof(ll));

WARNING: These sizes are **NOT** a guarantee. Don't always assume that every system will use these values!

How do we use this storage space (bits) to represent a value?
Let’s start with what we know…

• Digits 0-9
• **Positional numbering**
• Digits are composed to make larger numbers
• Known as **Base 10** representation
Decimal number system (Base 10)

- Sequence of digits in range [0, 9]
Decimal: Base 10

A number, written as the sequence of N digits,

\[d_{n-1} \ldots d_2 d_1 d_0 \]

where \(d \) is in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, represents the value:

\[
[d_{n-1} \times 10^{n-1}] + [d_{n-2} \times 10^{n-2}] + \ldots + [d_1 \times 10^1] + [d_0 \times 10^0]
\]

64025 =

\[
6 \times 10^4 + 4 \times 10^3 + 0 \times 10^2 + 2 \times 10^1 + 5 \times 10^0
\]

60000 + 4000 + 0 + 20 + 5
Binary: Base 2

• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits, $d_{n-1}d_{n-2}d_2d_1d_0$, where d is in \{0,1\}, represents the value:

$$[d_{n-1} \times 2^{n-1}] + [d_{n-2} \times 2^{n-2}] + ... + [d_2 \times 2^2] + [d_1 \times 2^1] + [d_0 \times 2^0]$$
Converting Binary to Decimal

Most significant bit $\rightarrow 10001111 \leftarrow$ Least significant bit

Representation: $1 \times 2^7 + 0 \times 2^6 \ldots + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

$$128 + 8 + 4 + 2 + 1$$

$10001111 = 143$
Hexadecimal: Base 16

Indicated by prefixing number with 0x

A number, written as the sequence of N digits,

\[d_{n-1} \ldots d_2d_1d_0,\]

where d is in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}, represents:

\[d_{n-1} * 16^{n-1} + d_{n-2} * 16^{n-2} + \ldots + d_2 * 16^2 + d_1 * 16^1 + d_0 * 16^0\]
Generalizing: Base b

The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

$$d_{n-1} \ldots d_2 d_1 d_0$$

in base b represents the value:

$$[d_{n-1} \times b^{n-1}] + [d_{n-2} \times b^{n-2}] + \ldots + [d_2 \times b^2] + [d_1 \times b^1] + [d_0 \times b^0]$$

Base 10: $[d_{n-1} \times 10^{n-1}] + [d_{n-2} \times 10^{n-2}] + \ldots + [d_1 \times 10^1] + [d_0 \times 10^0]$
Other (common) number systems.

• Base 2: How data is stored in hardware.
• Base 8: Used to represent file permissions.
• Base 10: Preferred by people.
• Base 16: Convenient for representing memory addresses.
• Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!
What is the value of $0b110101$ in decimal?

A number, written as the sequence of N digits $d_{n-1}...d_2d_1d_0$ where d is in $\{0,1\}$, represents the value:

$$[d_{n-1} \times 2^{n-1}] + [d_{n-2} \times 2^{n-2}] + ... + [d_2 \times 2^2] + [d_1 \times 2^1] + [d_0 \times 2^0]$$

A. 26
B. 53
C. 61
D. 106
E. 128
What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits $d_{n-1}...d_2d_1d_0$ where d is in $\{0,1\}$, represents the value:

$$[d_{n-1} \times 2^{n-1}] + [d_{n-2} \times 2^{n-2}] + ... + [d_2 \times 2^2] + [d_1 \times 2^1] + [d_0 \times 2^0]$$

A. 26
B. 53
C. 61
D. 106
E. 128
What is the value of 0x1B7 in decimal?

\[d_{n-1} \times 16^{n-1} + d_{n-2} \times 16^{n-2} + \ldots + d_2 \times 16^2 + d_1 \times 16^1 + d_0 \times 16^0 \]

(Note: \(16^2 = 256\))

A. 397
B. 409
C. 419
D. 437
E. 439
What is the value of 0x1B7 in decimal?

\[d_{n-1} \times 16^{n-1} + d_{n-2} \times 16^{n-2} + \ldots + d_2 \times 16^2 + d_1 \times 16^1 + d_0 \times 16^0 \]

(Note: \(16^2 = 256\))

A. 397
B. 409
C. 419
D. 437
E. 439

\[1 \times 16^2 + 11 \times 16^1 + 7 \times 16^0 = \]

\[256 + 176 + 7 = \textbf{439} \]
Important Point…

• You can represent the same value in a variety of number systems or bases.

• It’s all stored as binary in the computer.
 – Presence/absence of voltage.
Hexadecimal: Base 16

• Fewer digits to represent same value
 – Same amount of information!

• Like binary, the base is power of 2

• Each digit is a “nibble”, or half a byte.
Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• $16 = 2^4$, so each hex digit has exactly four bits worth of information.

• We can map each hex digit to a four-bit binary value. (helps for converting between bases)
Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
 1 B 7
Converting Decimal -> Binary

• Two methods:
 – division by two remainder
 – powers of two and subtraction
Method 1: decimal value D, binary result b (b_i is ith digit):

\[
i = 0
\]
\[
\text{while } (D > 0)
\]
\[
\quad \text{if } D \text{ is odd}
\]
\[
\quad \quad \text{set } b_i \text{ to } 1
\]
\[
\quad \text{if } D \text{ is even}
\]
\[
\quad \quad \text{set } b_i \text{ to } 0
\]
\[
i++
\]
\[
D = D/2
\]

idea:
example: $D = 105$ \hspace{1cm} $b_0 = 1$
Method 1: decimal value D, binary result b (b_i is ith digit):

\[
i = 0\\
\text{while } (D > 0)\\
\quad \text{if } D \text{ is odd}\\
\quad \quad \text{set } b_i \text{ to } 1\\
\quad \text{if } D \text{ is even}\\
\quad \quad \text{set } b_i \text{ to } 0\\
\quad i++\\
\text{D} = \frac{D}{2}\]

idea: D
example: $D = 105$ $b_0 = 1$

\[
D = \frac{D}{2}
D = 52
D = 26
a_2 = 0
D = 13
a_3 = 1
D = 6
a_4 = 0
D = 3
a_5 = 1
D = 1
a_6 = 1
D = 0
a_7 = 0
\]

Example: Converting 105
Method 1: decimal value D, binary result b (b_i is ith digit):

\[
i = 0
\]

\[
\text{while } (D > 0) \ni
\]

\[
\text{if } D \text{ is odd} \ni
\]

\[
\text{set } b_i \text{ to 1}
\]

\[
\text{if } D \text{ is even} \ni
\]

\[
\text{set } b_i \text{ to 0}
\]

\[
i++
\]

\[
D = D/2
\]

idea: D

Example: Converting 105

<table>
<thead>
<tr>
<th>D</th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
<th>b_6</th>
<th>b_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>D = $D/2$</td>
<td>105</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = $D/2$</td>
<td>52</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = $D/2$</td>
<td>26</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = $D/2$</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = $D/2$</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = $D/2$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = $D/2$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = 0 (done)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
105 = 01101001
\]
Method 2

- \(2^0 = 1, \ 2^1 = 2, \ 2^2 = 4, \ 2^3 = 8, \ 2^4 = 16, \ 2^5 = 32, \ 2^6 = 64, \ 2^7 = 128\)

To convert 105:
- Find largest power of two that’s less than 105 (64)
- Subtract 64 (105 – 64 = 41), put a 1 in \(d_6\)
- Subtract 32 (41 – 32 = 9), put a 1 in \(d_5\)
- Skip 16, it’s larger than 9, put a 0 in \(d_4\)
- Subtract 8 (9 – 8 = 1), put a 1 in \(d_3\)
- Skip 4 and 2, put a 0 in \(d_2\) and \(d_1\)
- Subtract 1 (1 – 1 = 0), put a 1 in \(d_0\) (Done)

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline
d_6 & d_5 & d_4 & d_3 & d_2 & d_1 & d_0
\end{array}
\]
What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

$2^0 = 1, \quad 2^1 = 2, \quad 2^2 = 4, \quad 2^3 = 8, \quad 2^4 = 16, \quad 2^5 = 32, \quad 2^6 = 64, \quad 2^7 = 128, \quad 2^8 = 256$
What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

\[
\begin{align*}
2^0 &= 1, & 2^1 &= 2, & 2^2 &= 4, & 2^3 &= 8, & 2^4 &= 16, \\
2^5 &= 32, & 2^6 &= 64, & 2^7 &= 128, & 2^8 &= 256
\end{align*}
\]

8 7654 3210 digit position

357 - 256 = 101
101 - 64 = 37
37 - 32 = 5
5 - 4 = 1
So far: Unsigned Integers

With N bits, can represent values: 0 to 2^n-1

We can always add 0’s to the front of a number without changing it:

$10110 = 010110 = 00010110 = 0000010110$
So far: Unsigned Integers

With N bits, can represent values: 0 to $2^n - 1$

- 1 byte: `char`, `unsigned char`
- 2 bytes: `short`, `unsigned short`
- 4 bytes: `int`, `unsigned int`, `float`
- 8 bytes: `long long`, `unsigned long long`, `double`
- 4 or 8 bytes: `long`, `unsigned long`
Unsigned Integers

• Suppose we had **one byte**
 – Can represent 2^8 (256) values
 – If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
Unsigned Integers

Suppose we had one byte
 – Can represent 2^8 (256) values
 – If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a finite storage space we cannot represent an infinite number of values!
Unsigned Integers

Suppose we had one byte

- Can represent 2^8 (256) values
- If unsigned (strictly non-negative):
 - $0 - 255$

 - $252 = 11111100$
 - $253 = 11111101$
 - $254 = 11111110$
 - $255 = 11111111$

What if we add one more?

Modular arithmetic: Here, all values are modulo 256.
Unsigned Addition (4-bit)

• Addition works like grade school addition:

\[
\begin{array}{c}
1 \\
0110 \quad 6 \\
+ 0100 \quad + 4 \\
\hline
1010 \quad 10
\end{array}
\]

Four bits give us range: 0 - 15
Unsigned Addition (4-bit)

- Addition works like grade school addition:

```
  1
 0110   6  1100   12
+ 0100  + 4  + 1010  +10
 1010   10  1 0110   6
^no carry out  ^carry out
```

Four bits give us range: 0 - 15

Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values
Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.
Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

-127 (11111111)
0
-1

A: signed magnitude

-1 (11111111)
0
-127

B: Two’s complement

C: Put them somewhere else.
Signed Magnitude Representation (for 4 bit values)

- One bit (usually left-most) signals:
 - 0 for positive
 - 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a number) is very simple!

For one byte:
0 = 00000000
What about 10000000?

Major con: Two ways to represent zero!
Two’s Complement Representation (for four bit values)

- Borrow nice property from number line:

 Only one instance of zero!
 Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256 unique values:
- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)
How do we represent fractions in binary?

-1/2
1/8
1/2
-1/8
1/4
1/16
1/32
...
Additional Info: Representing Signed Float Values

• One option (used for floats, **NOT** integers)
 – Let the first bit represent the sign
 – 0 means positive
 – 1 means negative

• For example:
 – 0101 -> 5
 – 1101 -> -5

• Problem with this scheme?
Additional Info: Floating Point Representation

1 bit for sign | exponent | fraction |
8 bits for exponent
23 bits for precision

\[
\text{value} = (-1)^{\text{sign}} \times 1.\text{fraction} \times 2^{(\text{exponent}-127)}
\]

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010

sign = 0 exp = 129 fraction = 2902458

= 1*1.2902458*2^2 = 5.16098

I don’t expect you to memorize this
Summary

• Images, Word Documents, Code, and Video can represented in bits.

• Byte or 8 bits is the smallest addressable unit

• N bits can represent \(2^N\) unique values

• A number is written as a sequence of digits: in the decimal base system
 - \([dn \times 10^n] + [dn-1 \times 10^{n-1}] + \ldots + [d2 \times 10^2] + [d1 \times 10^1] + [d0 \times 10^0]\)
 - For any base system:
 - \([dn \times b^n] + [dn-1 \times b^{n-1}] + \ldots + [d2 \times b^2] + [d1 \times b^1] + [d0 \times b^0]\)

• Hexadecimal values (represent 16 values): \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}
 - Each hexadecimal value can be represented by 4 bits. \(2^4=16\)

• A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit value is 255.
 - Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).