CS 31: Intro to Systems C Programming

LO3: Data representation

Vasanta Chaganti & Kevin Webb

Swarthmore College
September 12, 2023

Announcements

* HW1 is due Thursday before class
* up to groups of four
* invitations sent from gradescope

* Lab 1 is due Thursday, 11.59 PM

* Clickers will count for credit from this week

Check your frequency:

Rea d I N g QU IZ * Iclicker2: frequency AA

* Iclicker+: green light next to selection

| For new devices this should be okay,
* Note the red border! For used you may need to reset frequency

Reset:

. . 1. hold down power button until
o
1 minute per QUEStIOn blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

* No talking, no laptops, phones during the quiz

Agenda

Data representation
* number systems + conversion
* data types, storage
* sizes, representation
* signedness

p

-

User / Programmer
Wants low complexity

Abstraction

p

-

Applications
Specific functionality

p

-

Software library
Reusable functionality

p

-

Operating system
Manage resources

Complex devices
Compute & I/O

}
}
}
}
}

Data Storage

e Lots of technologies out there:
— Magnetic (hard drive, floppy disk)
— Optical (CD / DVD / Blu-Ray)
— Electronic (RAM, registers, ...)

* Focus on electronic for now
— WEe'll see (and build) digital circuits soon

* Relatively easy to differentiate two states
— Voltage present
— Voltage absent

Bits and Bytes

e Bit: a0 or 1 value (binary)

— HW represents as two different voltages

* 1:the presence of voltage (high voltage)
* 0: the absence of voltage (low voltage)

* Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111
(address) [0] [1] [2]

 Other names:
— 4 bits: Nibble
— “Word”: Depends on system, often 4 bytes

Files

Sequence of bytes... nothing more, nothing less

A.A
V! ~

HOEI@UFMM

C—:Q—_fl>

%QM@M@]I

Q)c)

00T0TIGLIORES

C 2)
= 1110()1261101101.
~ o~ ‘2 F
001 FQSAQITE N B>
Emfnmﬂo 001101101@3"1,001l |

.
Us

DOIOII

\ 1 Y9
A% A0

| I“Iﬁ%mm

o101101100h"‘

Binary Digits (BITs)

* One bit: two values (0O or 1)
* Two bits: four values (00, 01, 10, or 11)
* Three bits: eight values (000, 001, ..., 110, 111)

How many unique values can we represent with 9 bits? Why?

* One bit: two values (0O or 1)
* Two bits: four values (00, 01, 10, or 11)
* Three bits: eight values (000, 001, ..., 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

* One bit: two values (0O or 1)
* Two bits: four values (00, 01, 10, or 11)
* Three bits: eight values (000, 001, ..., 110, 111)

18

81

256

. 512

Some other number of values.

m o 0O o >

How many values?

1 bit: 0

1 bit;:

2 bits:

How many values?

N N

How many values?

0
<\ /\
2 bits: g0 0 1 10 11

A A A A

3 bits: 200 01 010 11 100 01 110 111

1 bit;:

©
[e)
[=

How many values?

1

<\

N\

A A A A

1 bit;:

11

01

2 bits:

o1 010 O0O11 100 101 110 111

000

3 bits:

0O000 0001 0010 0011 16values

4 bits:

0101 0110 0111

0100

1001 1010 1011
1110

1101

1000
1100

1111

2N values

N bits:

C types and their (typicall) sizes

bytes: long long,

TR G O RN AT

or 8 bytes: long,

unsigned long vl;
short sl1;
long long 11;

byte: char, unsigned char
bytes: short, unsigned short
bytes: int, unsigned 1int, float

/pnqimhad lona 1one Ani1ihle

<

WARNING: These sizes are NOT a
guarantee. Don't always assume that
every system will use these values!

~

4

// prints out number of bytes

printf (“$1lu $1u $1lu\n”,

sizeof (vl), sizeof(sl), sizeof(ll));

How do we use this storage space (bits) to represent a value?

| et’s start with what we know...

Digits 0-9

Positional numbering

Digits are composed to make larger numbers

Known as Base 10 representation

Decimal number system (Base 10)

e Sequence of digits in range [0, 9]

64025

|

Digit #0: 1’s place, “least significant digit”

Digit #1: 10’s place

Digit #4: “most significant digit”

Decimal: Base 10

A number, written as the sequence of N digits,
d, ;..d,d;d
wheredisin{0, 1, 2, 3,4,5, 6, 7, 8, 9}, represents the value:
[d,.;* 10" +[d,,* 10™2] + ... + [d, * 10%] + [dy * 109]
64025 =

6*10* + 4*10° + 0O0*10%2 + 2*10' + 5*10°
60000 + 4000 + O + 20 + 5

Binary: Base 2

* Used by computers to store digital values.

* |ndicated by prefixing number with Ob

* A number, written as the sequence of N digits,
d,;...d,d;dy, where dis in {0,1}, represents the value:

[d.* 2™ +[d,,*2™2] +...+[d, * 22] + [d, * 21] + [d, * 29]

Converting Binary to Decimal

Most significant bit —» 10001111 - Least significant bit
76543210

Representation: 1 x 27 + @ x 26 ...+ 1 x 23+ 1 x 22+ 1 x 21+ 1 x 2°
128 + + 8 + 4 + 2 + 1

10001111 = 143

Hexadecimal: Base 16

Indicated by prefixing number with 0Ox

A number, written as the sequence of N digits,

d.;...d,d;do,

[d,* 16"]+[d ,* 16"]+...+[d, * 162] +[d, * 161] + [dy * 16°]

Generalizing: Base b
The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,
d, ,...d,d;d,

in base b represents the value:

[dyy * b+ [d, 5 * b"2] + ...+ [d, * b2] + [d, * b1] + [dg * bO]

Base 10: [d, ; * 10"™1] + [d,, * 10"?] + ... + [d,; * 10%] + [d, * 10°]

Other (common) number systems.

 Base 2: How data is stored in hardware.

* Base 8: Used to represent file permissions.

* Base 10: Preferred by people.

* Base 16: Convenient for representing memory addresses.

* Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!

A number, written as the sequence of N digits d,;...d,d,d, where d is in {0,1},

What is the value of O0b110101 in decimal?

represents the value:

m o O o >

26
53
61
106
128

[d*2™) +[d,,*2™2] +...+[d, * 22] + [d; * 21] + [d, * 29]
0

A number, written as the sequence of N digits d,;...d,d,d, where d is in {0,1},

What is the value of O0b110101 in decimal?

represents the value:

m o O o >

26
53
61
106
128

[d*2™) +[d,,*2™2] +...+[d, * 22] + [d; * 21] + [d, * 29]
0

What is the value of Ox1B7 in decimal?

[d.,*16"M] +[d ,*16™2]+ ... +[d, *16%2]+[d; *161]+[d,* 16°]
(Note: 162 = 256)

397
409
419
. 437
439

mo o0 m >

DEC 6 12 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX 6 12 3 4 5 6 7 8 9 A B C D E F

What is the value of Ox1B7 in decimal?

[d.,*16"] +[d ,*16"2]+ ..+ [d,*16%2]+[d; *161]+ [d,* 16°]
(Note: 162 = 256)

A. 397
B. 409 1*¥162 + 11*161 + 7*16° =

C. 419 256 + 176 + 7 - 439
D. 437

E. 439

DEC 6 12 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX 6 12 3 4 5 6 7 8 9 A B C D E F

Important Point...

* You can represent the same value in a variety of number
systems or bases.

e It’s all stored as binary in the computer.

— Presence/absence of voltage.

Hexadecimal: Base 16

* Fewer digits to represent same value

— Same amount of information!
* Like binary, the base is power of 2

* Each digitis a “nibble”, or half a byte.

Each hex digit is a “nibble”
* One hex digit: 16 possible values (0-9, A-F)
e 16 =24, so each hex digit has exactly four bits worth of information.

 We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: Ox1B7

Four-bit value: 1
Four-bit value: B (decimal 11)

Four-bit value: 7

In binary: 0001 1011 0111
1 B 7

Converting Decimal -> Binary

* Two methods:
— division by two remainder

— powers of two and subtraction

Method 1: decimal value D, binary result b (b; is ith digit):

idea:

1 =20
while (D > 9)
if D is odd
set b; to 1
if D is even
set b; to ©
i++
D =D/2

example: D = 105

Example: Converting 105

Method 1: decimal value D, binary result b (b; is ith digit):

idea:

1 =20
while (D > 9)
if D is odd
set b; to 1
if D is even
set b; to ©
i++
D =D/2

105
52

example: D
D/2 D

Example: Converting 105

Method 1: decimal value D, binary result b (b; is ith digit):

1 =20
while (D > 0)
if D is odd .
Example: Converting 105
set b; to 1 P &
if D is even
set b; to ©
i++
D = D/2
idea: D example: D = 105 by =1
D = D/2 D = 52 b, = 0
D = D/2 D 26 b, = 0 A
D = D/2 D 13 by = 1
D = D/2 D 6 b, 0
D = D/2 D= 3 by = 1
D = D/2 D= 1 be = 1
D = 0 (done) D = 0 b, = 0
105 = 01101001

Method 2

e 20=1, 21=2 22=4, 23=8, 24=16, 2°=32, 2°=64, 2/=128
To convert 105:
— Find largest power of two that’s less than 105 (64)
— Subtract 64 (105-64=41), puta lindg
— Subtract 32 (41-32=9),putalinds
— Skip 16, it’s larger than 9, putaOind,
— Subtract 8 (9—-8=1),putalind;
— Skip4 and 2, putaOind, and d,
— Subtract1(1-1=0),putalind, (Done)

What is the value of 357 in binary?

8 7654 3210

A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101

» digit position

20=1, 21=2, 2?2=4, 23=8, 2*=16,
2°=32, 2°=64, 27=128, 2%8=1256

What is the value of 357 in binary?
8 7654 3210

» digit position

A. 101100011 357 — 256 = 101

101 — 64 = 37

B. 101100101 37 3¢

C. 101101001 5-4=1
D. 101110101

101 1 00 1 0 1

E. 110100101 d 4 d. d dy dy d, di dg

20=1, 21=2, 2?2=4, 23=8, 2*=16,
2°=32, 2°=64, 27=128, 2%8=1256

So tar: Unsigned Integers

With N bits, can represent values: O to 2"-1

We can always add 0’s to the front of a number without changing it:

10110= 010110 = 00010110 = 0000010110

So tar: Unsigned Integers

With N bits, can represent values: 0 to 2"-1

* 1 byte: char, unsigned char

* 2 bytes: short, unsigned short

* 4 bytes: 1nt, unsigned int, float

* 8 bytes: long long, unsigned long long, double
* 4 or 8 bytes: long, unsigned long

Unsigned Integers

* Suppose we had one byte

— Can represent 28 (256) values
— If unsigned (strictly non-negative): 0 — 255

252 =11111100 Traditional number line:
253 =11111101 Addition >

= 0 255 Larger
254 =11111110 V2|525—>

255=11111111

Unsigned Integers

Suppose we had one byte
— Can represent 28 (256) values
— If unsigned (strictly non-negative): 0 — 255

252 =11111100 Car odometer “rolls over”.
_ 999998
253 =11111101 nnnnnH
254 =11111110 -
255=11111111 Any time we are dealing with a

finite storage space we cannot
represent an infinite number of
values!

What if we add one more?

J

Unsigned Integers

Suppose we had one byte
e Can represent 28 (256) values

* |f unsigned (strictly non-negative): 255(11111111)

0—- 255 0 \Addition

252 =11111100

253=11111101 192 64
254=11111110
255=11111111 128

What if we add one more? (10000000)

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

* Addition works like grade school addition:

1

0110 0
+ 0100 + 4

1010 10

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

* Addition works like grade school addition:

1
0110 9 1100 12
+ 0100 + 4 + 1010 +10
1010 10 1 0110 S
"no carry out “carry out
Four bits give us range: 0 - 15 Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

Suppose we want to support signed values (positive_and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

1127 (11111111) -1(11111111)
\ 0 \ 0

-1

C: Put them somewhere else.

Suppose we want to support signed values (positive_and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

1127 (11111111) -1(11111111)
\ 0 \ 0

B: Two’s
complement

A: signed

magnitude

-1 -127

C: Put them somewhere else.

Signed Magnitude Representation (for 4 bit values)

* One bit (usually left-most) signals:
— O for positive
— 1 for negative

For one byte:
1 =00000001, -1 = 10000001

Pros: Negation (negative value of a number) is very simple!
For one byte:
0 = 00000000

What about 100000007

Major con: Two ways to represent zero!

Two's Complement Representation (for four bit values)

Negatives Non-Negatives

1111(-1) 0000 (0)

1110 (-2) 0001 (1)

1101 (-3) 0010 (2)

1100 (-4) 0011 (3)

1001 (-7) 0110 (6)

1000 (-8) 0111 (7)

Figure 2. A logical layout of two's complement values for bit sequences of length four.

For an 8 bit range we can express 256
unique values:
* 128 non-negative values (0 to 127)

* 128 negative values (-1 to -128)

* Borrow nice property
from number line:

o
11

Only one instance of zero!
Implies: -1 and 1 on either side of it.

Additional Info: Fractional binary numbers

How do we represent fractions in binary?

Slide 58

Additional Info: Representing Signed Float Values

* One option (used for floats, NOT integers)

— Let the first bit represent the sign
— 0 means positive
— 1 means negative

* For example:
~0101 -> 5

~ 1101 -> -5

* Problem with this scheme?

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision

value = (-1)si&" * 1 fraction * 2(exponent-127)

let's just plug in some values and try it out

O0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458

= 1%1.2902458*22 = 5.16098

| don’t expect you to memorize this

Summary

Images, Word Documents, Code, and Video can represented in bits.
Byte or 8 bits is the smallest addressable unit

: N .
N bits can represent 2 unique values

A number is written as a sequence of digits: in the decimal base system
— [dn*107An]+[dn-1*10~ A n-1]+...+[d2*1072]+[d1*10" 1]+ [dO*10~OQ]
— For any base system:
— [dn*bAn]+[dn-1*bAn-1]+...+[d2*b~A2]+[d1*bA 1]+ [d0O* b ~O0]
Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
— Each hexadecimal value can be represented by 4 bits. (224=16)

A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit

value is 255.

— Trying to represent a value >255 will result in an overflow.

Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

