
CS 31: Intro to Systems
Deadlock

Kevin Webb

Swarthmore College

December 6, 2022

“Deadly Embrace”

• The Structure of the THE-Multiprogramming System (Edsger
Dijkstra, 1968)

• Also introduced semaphores

• Deadlock is as old as synchronization

What is Deadlock?

• Deadlock is a problem that can arise:

– When processes compete for access to limited resources

– When threads are incorrectly synchronized

• Definition:

– Deadlock exists among a set of threads if every thread is
waiting for an event that can be caused only by another
thread in the set.

What is Deadlock?

• Set of threads are permanently blocked
– Unblocking of one relies on progress of another

– But none can make progress!

• Example
– Threads A and B

– Resources X and Y

– A holding X, waiting for Y

– B holding Y, waiting for X

– Each is waiting for the other; will wait forever

A

X

Y

B

waiting
for

waiting
for

holding

holding

Traffic Jam as Example of Deadlock

• Cars A, B, C, D

• Road W, X, Y, Z

• Car A holds road space Y, waiting
for space Z

• “Gridlock”

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Traffic Jam as Example of Deadlock

A

Z

B

D

W

C

Y X

Resource Allocation
Graph

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Four Conditions for Deadlock

1. Mutual Exclusion

– Only one thread may use a resource at a time.

2. Hold-and-Wait

– Thread holds resource while waiting for another.

3. No Preemption

– Can’t take a resource away from a thread.

4. Circular Wait

– The waiting threads form a cycle.

Four Conditions for Deadlock

1. Mutual Exclusion

– Only one thread may use a resource at a time.

2. Hold-and-Wait

– Thread holds resource while waiting for another.

3. No Preemption

– Can’t take a resource away from a thread.

4. Circular Wait

– The waiting threads form a cycle.

Examples of Deadlock

• Memory (a reusable resource)
– total memory = 200KB

– T1 requests 80KB

– T2 requests 70KB

– T1 requests 60KB (wait)

– T2 requests 80KB (wait)

• Messages (a consumable resource)
– T1: receive M2 from P2

– T2: receive M1 from P1

T1

T2

T1

M1

M2

T2

Banking, Revisited

struct account {

mutex lock;

int balance;

}

Transfer(from_acct, to_acct, amt) {

lock(from_acct.lock);

lock(to_acct.lock)

from_acct.balance -= amt;

to_acct.balance += amt;

unlock(to_acct.lock);

unlock(from_acct.lock);

}

If multiple threads are executing this code, is there a
race? Could a deadlock occur?

struct account {

mutex lock;

int balance;

}

Transfer(from_acct, to_acct, amt) {

lock(from_acct.lock);

lock(to_acct.lock)

from_acct.balance -= amt;

to_acct.balance += amt;

unlock(to_acct.lock);

unlock(from_acct.lock);

}

Clicker
Choice

Potential
Race?

Potential
Deadlock?

A No No

B Yes No

C No Yes

D Yes Yes

If there’s potential for a race/deadlock, what
execution ordering will trigger it?

Common Deadlock

Thread 0
Transfer(acctA, acctB, 20);

Transfer(…) {

lock(acctA.lock);

lock(acctB.lock);

Thread 1
Transfer(acctB, acctA, 40);

Transfer(…) {

lock(acctB.lock);

lock(acctA.lock);

Common Deadlock

Thread 0
Transfer(acctA, acctB, 20);

Transfer(…) {

lock(acctA.lock);

T0 gets to here

lock(acctB.lock);

Thread 1
Transfer(acctA, acctB, 40);

Transfer(…) {

lock(acctB.lock);

T1 gets to here

lock(acctA.lock);

T0 holds A’s lock, will make no progress until it can get B’s.
T1 holds B’s lock, will make no progress until it can get A’s.

How to Attack the Deadlock Problem

• What should your OS do to help you?

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks

– Rather, if they happen, detect and resolve

Which type of deadlock-handling
scheme would you expect to see in a
modern OS (Linux/Windows/OS X) ?

A. Deadlock prevention

B. Deadlock avoidance

C. Deadlock detection/recovery

D. Something else

“Ostrich Algorithm”

How to Attack the Deadlock Problem

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks

– Rather, if they happen, detect and resolve

• These all have major drawbacks…

Other Thread Complications

• Deadlock is not the only problem

• Performance: too much locking?

• Priority inversion

• …

Priority Inversion

• Problem: Low priority thread holds lock, high priority thread
waiting for lock.

– What needs to happen: boost low priority thread so that it can finish,
release the lock

– What sometimes happens in practice: low priority thread not
scheduled, can’t release lock

• Example: Mars Pathfinder (1997)

Sojourner Rover on Mars

Mars Rover

• Three periodic tasks:

1. Low priority: collect meteorological data

2. Medium priority: communicate with NASA

3. High priority: data storage/movement

• Tasks 1 and 3 require exclusive access to a hardware bus to
move data.

– Bus protected by a mutex.

Mars Rover

• Failsafe timer (watchdog): if high priority task doesn’t complete
in time, reboot system

• Observation: uh-oh, this thing seems to be rebooting a lot,
we’re losing data…

JPL engineers later confessed that one or two system resets had
occurred in their months of pre-flight testing. They had never
been reproducible or explainable, and so the engineers, in a
very human-nature response of denial, decided that they
probably weren't important, using the rationale "it was probably
caused by a hardware glitch".

What Happened: Priority Inversion

Time

H

M

L Low priority task, running happily.

What Happened: Priority Inversion

Time

H

M

L

Low priority task acquires mutex lock.

What Happened: Priority Inversion

Time

H

M

L Blocked

Medium task starts up, takes CPU.

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Low priority task can’t give up the
lock because it can’t run -
medium task takes priority over it.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

Blocked

High priority is
taking too long.

Reboot!

Solution: Priority Inheritance

Time

H

M

L -> H Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

Give to blue red’s (higher) priority!

Solution: Priority Inheritance

Time

H

M

Blocked

Blocked

Blocked

…

L

Release lock, revert to low priority.

High priority finishes in time.

Deadlock Summary

• Deadlock occurs when threads are waiting on each other and
cannot make progress.

• Deadlock requires four conditions:
– Mutual exclusion, hold and wait, no resource preemption, circular wait

• Approaches to dealing with deadlock:
– Ignore it – Living life on the edge (most common!)

– Prevention – Make one of the four conditions impossible

– Avoidance – Banker’s Algorithm (control allocation)

– Detection and Recovery – Look for a cycle, preempt/abort

