CS 31: Intro to Systems
Other Forms of Synchronization / Thread Patterns

Kevin Webb
Swarthmore College
December 1, 2022
Agenda

• Classic thread patterns

• Pthreads primitives and examples of other forms of synchronization:
 – Condition variables
 – Barriers
 – RW locks
Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection
The Producer/Consumer Problem

- Producer produces data, places it in shared buffer
- Consumer consumes data, removes from buffer
- Cooperation: Producer feeds Consumer
 - How does data get from Producer to Consumer?
 - How does Consumer wait for Producer?
Producer/Consumer: Shared Memory

shared int buf[N], in = 0, out = 0;

Producer
while (TRUE) {
 buf[in] = Produce ();
 in = (in + 1) % N;
}

Consumer
while (TRUE) {
 Consume (buf[out]);
 out = (out + 1) % N;
}

• Data transferred in shared memory buffer.
Producer/Consumer: Shared Memory

shared int buf[N], in = 0, out = 0;

Producer
while (TRUE) {
 buf[in] = Produce ();
 in = (in + 1)%N;
}

Consumer
while (TRUE) {
 Consume (buf[out]);
 out = (out + 1)%N;
}

• Data transferred in shared memory buffer.

• Is there a problem with this code?
 A. Yes, this is broken.
 B. No, this ought to be fine.
Adding Semaphores

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Producer
while (TRUE) {
 wait (X);
 buf[in] = Produce ();
 in = (in + 1)%N;
 signal (Y);
}

Consumer
while (TRUE) {
 wait (Z);
 Consume (buf[out]);
 out = (out + 1)%N;
 signal (W);
}

• Recall semaphores:
 – wait(): decrement sem and block if sem value < 0
 – signal(): increment sem and unblock a waiting process (if any)
Suppose we now have two semaphores to protect our array. Where do we use them?

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Producer

while (TRUE) {
 wait (X);
 buf[in] = Produce ();
 in = (in + 1)%N;
 signal (Y);
}

Consumer

while (TRUE) {
 wait (Z);
 Consume (buf[out]);
 out = (out + 1)%N;
 signal (W);
}

<table>
<thead>
<tr>
<th>Answer choice</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>emptyslots</td>
<td>emptyslots</td>
<td>filledslots</td>
<td>filledslots</td>
</tr>
<tr>
<td>B.</td>
<td>emptyslots</td>
<td>filledslots</td>
<td>filledslots</td>
<td>emptyslots</td>
</tr>
<tr>
<td>C.</td>
<td>filledslots</td>
<td>emptyslots</td>
<td>emptyslots</td>
<td>filledslots</td>
</tr>
</tbody>
</table>
Add Semaphores for Synchronization

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Producer
while (TRUE) {
 wait (emptyslots);
 buf[in] = Produce ();
 in = (in + 1)%N;
 signal (filledslots);
}

Consumer
while (TRUE) {
 wait (filledslots);
 Consume (buf[out]);
 out = (out + 1)%N;
 signal (emptyslots);
}

• Buffer empty, Consumer waits
• Buffer full, Producer waits
• Don’t confuse synchronization with mutual exclusion
Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”
 – Condition variable: wait for a condition to be true
Condition Variables

• In the pthreads library:
 – pthread_cond_init: Initialize CV
 – pthread_cond_wait: Wait on CV
 – pthread_cond_signal: Wakeup one waiter
 – pthread_cond_broadcast: Wakeup all waiters

• Condition variable is associated with a mutex:
 1. Lock mutex, realize conditions aren’t ready yet
 2. Temporarily give up mutex until CV signaled
 3. Reacquire mutex and wake up when ready
while (TRUE) {
 //independent code
 lock(m);
 while (conditions bad)
 wait(cond, m);

 //proceed knowing that conditions are now good
 signal (other_cond); // Let other thread know
 unlock(m);
}
Condition Variable Example

shared int buf[N], in = 0, out = 0;
shared int count = 0; // # of items in buffer
shared mutex m;
shared cond notempty, notfull;

Producer
while (TRUE) {
 item = Produce();
 lock(m);
 while (count == N)
 wait(m, notfull);
 buf[in] = item;
 in = (in + 1)%N;
 count += 1;
 signal (notempty);
 unlock(m);
}

Consumer
while (TRUE) {
 lock(m);
 while (count == 0)
 wait(m, notempty);
 item = buf[out];
 out = (out + 1)%N;
 count -= 1;
 signal (notfull);
 unlock(m);
 Consume(item);
}
Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”
 – Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”
 – Barrier: wait for everyone to catch up.
Barriers

• Used to coordinate threads, but also other forms of concurrent execution.

• Often found in simulations that have discrete rounds. (e.g., game of life)
Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (...) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier Example, N Threads

shared barrier b;
init_barrier(&b, N);
create_threads(N, func);

void *func(void *arg) {
 while (...) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Threads make progress computing current round at different rates.

Barrier (0 waiting)
Barrier Example, N Threads

shared barrier b;
init_barrier(&b, N);
create_threads(N, func);

void *func(void *arg) {
 while (...) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Threads that make it to barrier must wait for all others to get there.
Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (...) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier allows threads to pass when N threads reach it.
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (...) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Threads compute next round, wait on barrier again, repeat...

Barrier (0 waiting)
Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”
 – Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”
 – Barrier: wait for everyone to catch up.

• “I want my threads to share a critical section when they’re reading, but still safely write.”
 – Readers/writers lock: distinguish how lock is used
Readers/Writers

• Readers/Writers Problem:
 – An object is shared among several threads
 – Some threads only read the object, others only write it
 – We can safely allow multiple readers
 – But only one writer

• pthread_rwlock_t:
 – pthread_rwlock_init: initialize rwlock
 – pthread_rwlock_rdlock: lock for reading
 – pthread_rwlock_wrlock: lock for writing
Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection
Thread Pool / Work Queue

• Common way of structuring threaded apps:
Thread Pool / Work Queue

• Common way of structuring threaded apps:

Queue of work to be done:

Thread Pool
Thread Pool / Work Queue

• Common way of structuring threaded apps:

Queue of work to be done: Farm out work to threads when they’re idle.
Thread Pool / Work Queue

• Common way of structuring threaded apps:

 Queue of work to be done:

 As threads finish work at their own rate, they grab the next item in queue.

 Thread Pool

Common for “embarrassingly parallel” algorithms.

Works across the network too!
Thread Per Client

• Consider Web server:
 – Client connects
 – Client asks for a page:
 • http://web.cs.swarthmore.edu/~kwebb/cs31
 • “Give me /~kwebb/cs31”
 – Server looks through file system to find path (I/O)
 – Server sends back html for client browser (I/O)

• Web server does this for MANY clients at once
Thread Per Client

• Server “main” thread:
 – Wait for new connections
 – Upon receiving one, spawn new client thread
 – Continue waiting for new connections, repeat...

• Client threads:
 – Read client request, find files in file system
 – Send files back to client
 – **Nice property:** Each client is independent
 – **Nice property:** When a thread does I/O, it gets blocked for a while. OS can schedule another one.
Summary

• Many ways to solve the same classic problems
 – Producer/Consumer: semaphores, CVs, messages

• There’s more to synchronization than just mutual exclusion!
 – CVs, barriers, RWlocks, and others.