
CS 31: Intro to Systems
Other Forms of Synchronization / Thread Patterns

Kevin Webb

Swarthmore College

December 1, 2022

Agenda

• Classic thread patterns

• Pthreads primitives and examples of other forms of
synchronization:

– Condition variables

– Barriers

– RW locks

Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection

The Producer/Consumer Problem

• Producer produces data, places it in shared buffer

• Consumer consumes data, removes from buffer

• Cooperation: Producer feeds Consumer

– How does data get from Producer to Consumer?

– How does Consumer wait for Producer?

Producer Consumer3 5 4 92

in

out
buf

Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

Producer

while (TRUE) {

buf[in] = Produce ();

in = (in + 1)%N;

}

Consumer

while (TRUE) {

Consume (buf[out]);

out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

• Is there a problem with this code?
A. Yes, this is broken.

B. No, this ought to be fine.

Producer

while (TRUE) {

buf[in] = Produce ();

in = (in + 1)%N;

}

Consumer

while (TRUE) {

Consume (buf[out]);

out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

Adding Semaphores

Producer

while (TRUE) {

wait (X);

buf[in] = Produce ();

in = (in + 1)%N;

signal (Y);

}

Consumer

while (TRUE) {

wait (Z);

Consume (buf[out]);

out = (out + 1)%N;

signal (W);

}

shared int buf[N], in = 0, out = 0;

shared sem filledslots = 0, emptyslots = N;

• Recall semaphores:

– wait(): decrement sem and block if sem value < 0

– signal(): increment sem and unblock a waiting process (if any)

Suppose we now have two
semaphores to protect our array.
Where do we use them?

Producer

while (TRUE) {

wait (X);

buf[in] = Produce ();

in = (in + 1)%N;

signal (Y);

}

Consumer

while (TRUE) {

wait (Z);

Consume (buf[out]);

out = (out + 1)%N;

signal (W);

}

shared int buf[N], in = 0, out = 0;

shared sem filledslots = 0, emptyslots = N;

Answer choice X Y Z W

A. emptyslots emptyslots filledslots filledslots

B. emptyslots filledslots filledslots emptyslots

C. filledslots emptyslots emptyslots filledslots

Add Semaphores for Synchronization

• Buffer empty, Consumer waits

• Buffer full, Producer waits

• Don’t confuse synchronization with mutual exclusion

Producer

while (TRUE) {

wait (emptyslots);

buf[in] = Produce ();

in = (in + 1)%N;

signal (filledslots);

}

Consumer

while (TRUE) {

wait (filledslots);

Consume (buf[out]);

out = (out + 1)%N;

signal (emptyslots);

}

shared int buf[N], in = 0, out = 0;

shared sem filledslots = 0, emptyslots = N;

Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”

– Condition variable: wait for a condition to be true

Condition Variables

• In the pthreads library:
– pthread_cond_init: Initialize CV

– pthread_cond_wait: Wait on CV

– pthread_cond_signal: Wakeup one waiter

– pthread_cond_broadcast: Wakeup all waiters

• Condition variable is associated with a mutex:
1. Lock mutex, realize conditions aren’t ready yet

2. Temporarily give up mutex until CV signaled

3. Reacquire mutex and wake up when ready

Condition Variable Pattern
while (TRUE) {

//independent code

lock(m);

while (conditions bad)

wait(cond, m);

//proceed knowing that conditions are now good

signal (other_cond); // Let other thread know

unlock(m);

}

Condition Variable Example

Producer

while (TRUE) {

item = Produce();

lock(m);

while (count == N)

wait(m, notfull);

buf[in] = item;

in = (in + 1)%N;

count += 1;

signal (notempty);

unlock(m);

}

Consumer

while (TRUE) {

lock(m);

while (count == 0)

wait(m, notempty);

item = buf[out];

out = (out + 1)%N;

count -= 1;

signal (notfull);

unlock(m);

Consume(item);

}

shared int buf[N], in = 0, out = 0;

shared int count = 0; // # of items in buffer

shared mutex m;

shared cond notempty, notfull;

Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”

– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”

– Barrier: wait for everyone to catch up.

Barriers

• Used to coordinate threads, but also other forms of concurrent
execution.

• Often found in simulations that have discrete rounds. (e.g.,
game of life)

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {

compute_sim_round()

barrier_wait(&b)

}

}

T1T0 T2 T3 T4

Barrier (0 waiting)

Time

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {

compute_sim_round()

barrier_wait(&b)

}

}

Time

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing
current round at different rates.

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {

compute_sim_round()

barrier_wait(&b)

}

}

Time

Barrier (3 waiting)

Threads that make it to barrier must
wait for all others to get there.

T1

T0 T2

T3

T4

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {

compute_sim_round()

barrier_wait(&b)

}

}

Time

Barrier (5 waiting)

Barrier allows threads to pass when
N threads reach it.

T1T0 T2 T3 T4

Matches

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {

compute_sim_round()

barrier_wait(&b)

}

}

Barrier (0 waiting)

Threads compute next round, wait
on barrier again, repeat…

T1

T0 T2 T3

T4

Time

Synchronization: More than Mutexes

• “I want to block a thread until something
specific happens.”
– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same
point.”
– Barrier: wait for everyone to catch up.

• “I want my threads to share a critical section
when they’re reading, but still safely write.”
– Readers/writers lock: distinguish how lock is used

Readers/Writers

• Readers/Writers Problem:

– An object is shared among several threads

– Some threads only read the object, others only write it

– We can safely allow multiple readers

– But only one writer

• pthread_rwlock_t:

– pthread_rwlock_init: initialize rwlock

– pthread_rwlock_rdlock: lock for reading

– pthread_rwlock_wrlock: lock for writing

Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done:

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done:
Farm out work to threads
when they’re idle.

Thread Pool

Queue of work to be done:

As threads finish work at their own
rate, they grab the next item in queue.

Common for “embarrassingly
parallel” algorithms.

Works across the network too!

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Per Client

• Consider Web server:
– Client connects

– Client asks for a page:
• http://web.cs.swarthmore.edu/~kwebb/cs31

• “Give me /~kwebb/cs31”

– Server looks through file system to find path (I/O)

– Server sends back html for client browser (I/O)

• Web server does this for MANY clients at once

Thread Per Client

• Server “main” thread:
– Wait for new connections

– Upon receiving one, spawn new client thread

– Continue waiting for new connections, repeat…

• Client threads:
– Read client request, find files in file system

– Send files back to client

– Nice property: Each client is independent

– Nice property: When a thread does I/O, it gets blocked
for a while. OS can schedule another one.

Summary

• Many ways to solve the same classic problems

– Producer/Consumer: semaphores, CVs, messages

• There’s more to synchronization than just mutual exclusion!

– CVs, barriers, RWlocks, and others.

