
CS 31: Intro to Systems
Functions and the Stack

Kevin Webb

Swarthmore College

October 4, 2022

Reading Quiz

Overview

• Stack data structure, applied to memory

• Behavior of function calls

• Storage of function data, at assembly level

“A” Stack

• A stack is a basic data structure
• Last in, first out behavior (LIFO)

• Two operations
• Push (add item to top of stack)

• Pop (remove item from top of stack)

Oldest data

Newest data

Push (add data item)

Pop (remove and return item)

“The” Stack

• Apply stack data structure to memory
• Store local (automatic) variables

• Maintain state for functions (e.g., where to return)

• Organized into units called frames
• One frame represents all of the information for one function.

• Sometimes called activation records

Memory Model

• Starts at the highest memory
addresses, grows into lower
addresses.

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Stack Frames

• As functions get called,
new frames added to stack.

• Example: Lab 4
• main calls get_values()

• get_values calls read_float()

• read_float calls I/O library

main

0xFFFFFFFF

get_values

read_float

(I/O library)

Stack Frames

• As functions return,
frames removed from stack.

• Example: Lab 4
• I/O library returns to read_float

• read_float returns to get_values

• get_values returns to main

main

0xFFFFFFFF

get_values

read_float

(I/O library)

All of this stack growing/shrinking happens automatically
(from the programmer’s perspective).

What is responsible for creating and removing
stack frames?

A. The user

B. The compiler

C. C library code

D. The operating system

E. Something / someone else

Insight: EVERY function needs a stack
frame. Creating / destroying a stack
frame is a (mostly) generic procedure.

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know / access?

• Local variables

• Current / previous stack frame location

• Function arguments

• Return address

• Return value

• Saved registers

• Spilled temporaries
main

0xFFFFFFFF

get_values

read_float

Local Variables

If the programmer says:
int x = 0;

Where should x be stored?
(Recall basic stack data structure)

Which memory address is that?

main

0xFFFFFFFF

function 1

function 2

X goes here

0x????????

How should we determine the address to use
for storing a new local variable?

A. The programmer specifies the variable location.

B. The CPU stores the location of the current stack frame.

C. The operating system keeps track of the top of the stack.

D. The compiler knows / determines where the local data for
each function will be as it generates code.

E. The address is determined some other way.

Program Characteristics

• Compile time (static)
• Information that is known by analyzing your program

• Independent of the machine and inputs

• Run time (dynamic)
• Information that isn’t known until program is running

• Depends on machine characteristics and user input

The Compiler Can…

• Perform type checking.

• Determine how much space you need on the stack to store local
variables.

• Insert assembly instructions for you to set up the stack for function calls.
• Create stack frames on function call

• Restore stack to previous state on function return

Local Variables

• Compiler can allocate N bytes on the stack by
subtracting N from the “stack pointer”: sp

Current Stack
Frame

Current Stack
Frame

sp

sp - N

N bytes

New variable

The Compiler Can’t…

• Predict user input.

int main() {

int decision = [read user input];

if (decision > 5) {

funcA();

} else {

funcB();

}

} main

0xFFFFFFFF

?

The Compiler Can’t…

• Predict user input.

int main() {

int decision = [read user input];

if (decision > 5) {

funcA();

} else {

funcB();

}

} main

0xFFFFFFFF

funcB

main

0xFFFFFFFF

funcA OR

The Compiler Can’t…

• Predict user input.

• Can’t assume a function will always be at a certain
address on the stack.

main

0xFFFFFFFF

funcB

main

0xFFFFFFFF

funcA OR
Alternative: create stack
frames relative to the current
(dynamic) state of the stack.

Stack Frame Location

• Where in memory is the current stack frame?

main

0xFFFFFFFF

function 1

function 2

Current top of stack

Current bottom of stack

Recall: ARM64 Register Conventions

• Even though x0 - x31 are general-
purpose, some are unofficially
reserved for specific purposes…

• x29 - x31 used to keep track of
function / stack information
(more on this later)

pc

General-purpose registers

Program Counter (PC)

x0

x1

x2

…

x28

x29 (fp)

x30 (lr)

x31 (sp)

zr Zero Register (always 0)

read
-o

n
ly

Frame Pointer

Link Register

Stack Pointer

N Z C V Condition codes (aka flags)

Stack Frame Location

• Where in memory is the current stack frame?

• Maintain invariant:
• The current function’s

stack frame is always
between the addresses
stored in sp and fp

• sp: stack pointer

• fp: frame pointer (base pointer) main

0xFFFFFFFF

function 1

function 2

sp

fp

Stack Frame Location

• Compiler ensures that this invariant holds.
• We’ll see how a bit later.

• This is why all local
variables we’ve seen
in assembly are relative
to fp or sp!

main

0xFFFFFFFF

function 1

function 2

sp

fp

How would we implement pushing x to the
top of the stack in ARM64?
A. Increment sp

Store x at [sp]

B. Store x at [sp]
Increment sp

C. Decrement sp
Store x at [sp]

D. Store x at [sp]
Decrement sp

E. Copy sp to fp
Store x at fp main

0xFFFFFFFF

function 1

function 2

X goes here
sp

(Top of stack)

fp
(Frame start)

Local Variables

• More generally, we can make space on the stack for N bytes by
subtracting N from sp

• NOTE: for ARM64, the sp register must hold a multiple of 16
(it's said to be "16-byte aligned")

Current Stack
Frame

Current Stack
Frame

sp sp - N
N bytes

New variable

Local Variables

• More generally, we can make space on the stack for N bytes by
subtracting N from sp

• When we’re done, free the space by adding N back to sp

Current Stack
Frame

Current Stack
Frame

sp

sp - N

N bytes

New variable

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables

• Previous stack frame base address

• Function arguments

• Return value

• Return address

• Saved registers

• Spilled temporaries
main

0xFFFFFFFF

function 1

function 2

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables

• Previous stack frame base address

• Function arguments

• Return value

• Return address

• Saved registers

• Spilled temporaries
main

0xFFFFFFFF

function 1

function 2

Stack Frame Relationships

• If function 1 calls function 2:
• function 1 is the caller

• function 2 is the callee

• With respect to main:
• main is the caller

• function 1 is the callee

main

0xFFFFFFFF

function 1
(caller)

function 2
(callee)

Where should we store all this stuff?

A. In registers

B. On the heap

C. In the caller’s stack frame

D. In the callee’s stack frame

E. Somewhere else

Previous stack frame base address
Function arguments
Return value
Return address

Calling Convention

• You could store this stuff wherever you want!
• The hardware does NOT care.

• What matters: everyone agrees on where to find the necessary data.

• Calling convention: agreed upon system for exchanging data between
caller and callee

ARM64 Calling Convention

• When possible, keep values in registers
• ARM has lots of registers available

• Accessing registers is faster than memory (stack)

• When a function (caller) calls another (callee):
• The caller saves the frame pointer (fp / x29) and return address (lr / x30) on

the stack.

• The caller passes the first eight arguments in registers x0 - x7
(If more arguments are needed, they go on the stack)

• If the callee produces a result, it returns it via register x0

ARM64 Calling Convention

• When possible, keep values in registers
• ARM has lots of registers available

• Accessing registers is faster than memory (stack)

• When a function (caller) calls another (callee):
• The caller saves the frame pointer (fp / x29) and return address (lr / x30) on

the stack.

• The caller passes the first eight arguments in registers x0 - x7
(If more arguments are needed, they go on the stack)

• If the callee produces a result, it returns it via register x0

Stack Frame Location

• Compiler ensures that this invariant holds.
• We’ll see how a bit later.

• This is why all local
variables we’ve seen
in assembly are relative
to fp or sp!

main

0xFFFFFFFF

function 1

function 2

sp

fp

Two important pieces of state…

1. Keeping track of top/bottom of stack

• Dedicate CPU registers for stack
bookkeeping
• sp (stack pointer, x31):

Top of current stack frame

• fp (frame pointer, x29):
Base of current stack frame

current stack
frame

sp

fp …

ARM64 Calling Convention

• When possible, keep values in registers
• ARM has lots of registers available

• Accessing registers is faster than memory (stack)

• When a function (caller) calls another (callee):
• The caller saves the frame pointer (fp / x29) and return address (lr / x30) on

the stack.

• The caller passes the first eight arguments in registers x0 - x7
(If more arguments are needed, they go on the stack)

• If the callee produces a result, it returns it via register x0

Return Address

• When you call a function, you expect that when the function returns,
you proceed with the next statement after the function call.

• To make this behavior happen, we must store at address of the next
instruction before branching (changing the PC) to the callee.

• ARM64 calls this a "branch with link"

Branch with link (bl)

1. Save PC+4 (address of next instruction after the bl) into x30 (LR)

2. Unconditionally change the PC to the start of the callee's code

• Later, when callee executes a ret instruction, set PC back to the value
in the link register (x30 / LR)

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Program
Counter (PC)

Link Register
(x30 / lr)

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Program
Counter (PC)

Link Register
(x30 / lr)

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Program
Counter (PC)

Link Register
(x30 / lr)

1. Save PC+4 (address of next instruction after the bl)
into x30 (LR)

2. Unconditionally change the PC to the start of the
callee's code

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Program
Counter (PC)

Link Register
(x30 / lr)

1. Save PC+4 (address of next instruction after the bl)
into x30 (LR)

2. Unconditionally change the PC to the start of the
callee's code

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Program
Counter (PC)

Link Register
(x30 / lr)

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Program
Counter (PC)

Link Register
(x30 / lr)

Restore PC to the address in x30 (LR)

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

bl funcB

mov x3, #5

…

funcB:

sub sp, sp, #0x10

add x0, x1, #20

…

ret

Function A

Function B

…

Program
Counter (PC)

Link Register
(x30 / lr)

Restore PC to the address in x30 (LR)

Two important pieces of state…

1. Keeping track of top/bottom of stack

• Dedicate CPU registers for stack
bookkeeping
• sp (stack pointer, x31):

Top of current stack frame

• fp (frame pointer, x29):
Base of current stack frame

2. Keeping track of return address

• Dedicate CPU register for storing
the address to jump back to
(x30)

current stack
frame

sp

fp …

This all works fine if just one function calls
one other function. What if we want to

chain multiple function calls though?
(e.g., A calls B calls C, calls …)

There's only ONE of: x29, x30, x31

ARM64 Calling Convention

• When possible, keep values in registers
• ARM has lots of registers available

• Accessing registers is faster than memory (stack)

• When a function (caller) calls another (callee):
• The caller saves the frame pointer (fp / x29) and return address (lr / x30) on

the stack.

• The caller passes the first eight arguments in registers x0 - x7
(If more arguments are needed, they go on the stack)

• If the callee produces a result, it returns it via register x0

Function Call Sequence

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• Must adjust sp, fp on call / return.

caller

sp

fp …

Stack

Function Call Sequence

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• Before calling a function, the caller:
1. Raises the stack pointer to make

room for x29 (fp) and x30 (lr)

caller

sp

fp …

Stack

Explanation:

We need space on the stack to store
the caller's return address and the

caller's frame pointer so that we can
restore them later.

Function Call Sequence

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• Before calling a function, the caller:
1. Raises the stack pointer to make

room for x29 (fp) and x30 (lr)

2. Saves x29 and x30 in the new space

caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

Explanation:

We need space on the stack to store
the caller's return address and the

caller's frame pointer so that we can
restore them later.

Function Call Sequence

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• Before calling a function, the caller:
1. Raises the stack pointer to make

room for x29 (fp) and x30 (lr)

2. Saves x29 and x30 in the new space

3. Set x29 (fp) to match sp
caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

Explanation:

We're building a new stack frame for
the callee, and fp should point to the
bottom of it. The top of the caller's

stack frame is the bottom of the
callee's.

Function Call Sequence

• Must maintain invariant:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• Before calling a function, the caller:
1. Raises the stack pointer to make

room for x29 (fp) and x30 (lr)

2. Saves x29 and x30 in the new space

3. Set x29 (fp) to match sp

4. Execute a bl instruction to begin the
callee. This overwrites x30 to be the
address of the caller's next instruction.

caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

Explanation:

When the callee returns, we need to
know where to resume execution in

the caller. Register x29 stores the
address of the caller's next

instruction after executing bl.

Callee Executes…

• Must maintain invariants:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• At this point, the callee has begun
execution. It can do what it wants.

• Callee will generally raise the stack
pointer to give itself space for
local variables

caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

callee

Callee Executes…

• Must maintain invariants:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• At this point, the callee has begun
execution. It can do what it wants.

• Before returning, callee resets sp
back to what it was when it started caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

callee

Callee Executes…

• Must maintain invariants:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• At this point, the callee has begun
execution. It can do what it wants.

• Before returning, callee resets sp
back to what it was when it started caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

callee

Callee Returns…

• Must maintain invariants:
• The current function’s stack frame is always

between the addresses stored in sp and fp

• The link register contains the return address

• Caller resumes execution

• Caller (eventually) restores x29 and
x30 from values saved on stack

caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

caller

…

Stack

sp

fp

caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

caller

sp

fp …

Stack

caller's x30 value

caller's x29 value

callee

Caller prior to function call. Caller saves its fp and lr registers.

Caller sets fp to bottom of callee's new frame. Callee executes.

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables

• Previous stack frame base address

• Function arguments

• Return value

• Return address

• Saved registers

• Spilled temporaries
main

0xFFFFFFFF

function 1

function 2

Saving Registers

• Registers are a relatively scarce resource, but they’re fast to access.
Memory is plentiful, but slower to access.

• Should the caller save its registers to free them up for the callee to use?

• Should the callee save the registers in case the caller was using them?

• Who needs more registers for temporary calculations, the caller or
callee?

• Clearly the answers depend on what the functions do…

Splitting the difference…

• We can’t know the answers to those questions in advance…

• Divide registers into two groups:
• Caller-saved: x9-x15

• If the caller wants to preserve these registers, it must save them prior to calling callee

• callee free to trash these, caller will restore if needed

• Callee-saved: x19-x29
• If the callee wants to use these registers, it must save them first, and restore them

before returning

• caller can assume these will be preserved

Running Out of Registers

• Some computations require more than 29 general-purpose registers
to store temporary values.

• Register spilling: The compiler will move some temporary values to
memory, if necessary.
• Values pushed onto stack, popped off later

• No explicit variable declared by user

Up next…

• Arrays, Structs, and Pointers

