
CS 31: Intro to Systems
ISAs and Assembly

Kevin Webb

Swarthmore College

September 20, 2022

Reading Quiz

Overview

• How to directly interact with hardware

• Instruction set architecture (ISA)
• Interface between programmer and CPU

• Established instruction format (assembly lang)

• Assembly programming (ARM64)

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface

Compilation Steps (.c to a.out)

text

executable
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step: gcc p1.c

Compiler (gcc)

Reality is more complex:
there are intermediate steps!

Compilation Steps (.c to a.out)

text

text

executable
binary

Compiler (gcc -S)

C program (p1.c)

Assembly program (p1.s)

Executable code (a.out)

You can see the results of
intermediate compilation
steps using different gcc flags

CS75

Assembly Code
Human-readable form of CPU instructions

• Almost a 1-to-1 mapping to Machine Code

• Hides some details:
• Registers have names rather than numbers

• Instructions have names rather than codes

We’re going to use ARM64 assembly
• CS lab machines are x86 (x86-64)

• We have a small cluster of ARM64 machines for CS 31
• On that cluster, can compile C to ARM64 assembly:

gcc -S code.c # open code.s in editor to view

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

Object / Executable / Machine Code
Machine Code (Hexadecimal for readability)
d1 00 43 ff

52 80 01 40

b9 00 0f e0

52 80 02 80

b9 00 0b e0

b9 40 0f e1

b9 40 0b e0

0b 00 00 20

b9 00 0f e0

b9 40 0f e0

91 00 43 ff

d6 5f 03 c0

Assembly
sub sp, sp, #0x10

mov w0, #0xa

str w0, [sp, #12]

mov w0, #0x14

str w0, [sp, #8]

ldr w1, [sp, #12]

ldr w0, [sp, #8]

add w0, w1, w0

str w0, [sp, #12]

ldr w0, [sp, #12]

add sp, sp, #0x10

ret

int main(void) {
int a = 10;
int b = 20;

a = a + b;

return a;
}

Object / Executable / Machine Code
Assembly
sub sp, sp, #0x10

mov w0, #0xa

str w0, [sp, #12]

mov w0, #0x14

str w0, [sp, #8]

ldr w1, [sp, #12]

ldr w0, [sp, #8]

add w0, w1, w0

str w0, [sp, #12]

ldr w0, [sp, #12]

add sp, sp, #0x10

ret

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

High-level language

CPU-specific format (011010…)

Interface for speaking to CPU

Instruction Set Architecture (ISA)
• ISA (or simply architecture):

Interface between lowest software level and the hardware.

• Defines specification of the language for controlling CPU state:
• Provides a set of instructions

• Makes CPU registers available

• Allows access to main memory

• Exports control flow (change what executes next)

Instruction Set Architecture (ISA)

• The agreed-upon interface between all software that runs on the
machine and the hardware that executes it.

I/O systemCPU / Processor

Compiler

Operating
System

Application / Program

Digital Circuits

Logic Gates

Instruction Set
Architecture

ISA Examples

• Intel IA-32 (80x86)

• ARM

• MIPS

• PowerPC

• IBM Cell

• Motorola 68k

• Intel IA-64 (Itanium)

• VAX

• SPARC

• Alpha

• IBM 360

How many of these ISAs have you
used? (Don’t worry if you’re not sure. Try to guess
based on the types of CPUs/devices you interact with.)

• Intel IA-32 (80x86)

• ARM

• MIPS

• PowerPC

• IBM Cell

• Motorola 68k

• Intel IA-64 (Itanium)

• VAX

• SPARC

• Alpha

• IBM 360

A. 0
B. 1-2
C. 3-4

D. 5-6
E. 7+

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users

• Allows a program to run on any machine
(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users

• Allows a program to run on any machine
(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

Instruction Translation

int sum(int x, int y) {

int res;

res = x+y;

return res;

}

sum.c (High-level C)

sum:

sub sp, sp, #0x20

str w0, [sp, #12]

str w1, [sp, #8]

ldr w1, [sp, #12]

ldr w0, [sp, #8]

add w0, w1, w0

str w0, [sp, #28]

ldr w0, [sp, #28]

add sp, sp, #0x20

ret

sum.s (Assembly)

sum.s from sum.c:

gcc –S sum.c

Instructions to set up the stack
frame and get argument values

An add instruction to compute sum

Instructions to return from function

ISA Design Questions

int sum(int x, int y) {

int res;

res = x+y;

return res;

}

sum.c (High-level C)

sum.s from sum.c:

gcc –S sum.c

What should these instructions do?

What is/isn’t allowed by hardware?

How complex should they be?

Example: supporting multiplication.

sum:

sub sp, sp, #0x20

str w0, [sp, #12]

str w1, [sp, #8]

ldr w1, [sp, #12]

ldr w0, [sp, #8]

add w0, w1, w0

str w0, [sp, #28]

ldr w0, [sp, #28]

add sp, sp, #0x20

ret

sum.s (Assembly)

C statement: A = A*B

Simple instructions:

LOAD REG1, A

LOAD REG2, B

PROD REG1, REG2

STORE A, REG1

Powerful instructions:

MULT A, B

Translation:
Load the values ‘A’ and ‘B’ from memory into registers, compute
the product, store the result in memory where ‘A’ was.

Which would you use if you were designing
an ISA for your CPU? (Why?)

A. Simple

B. Powerful

C. Something else

Simple instructions:

LOAD REG1, A

LOAD REG2, B

PROD REG1, REG2

STORE A, REG1

Powerful instructions:

MULT A, B

RISC versus CISC (Historically)

• Complex Instruction Set Computing (CISC)
• Large, rich instruction set
• More complicated instructions built into hardware
• Multiple clock cycles per instruction
• Easier for humans to reason about

• Reduced Instruction Set Computing (RISC)
• Small, highly optimized set of instructions
• Memory accesses are specific instructions
• One instruction per clock cycle
• Compiler: more work, more potential optimization

So . . . Which System “Won”?

• Most ISAs (after mid/late 1980’s) are RISC

• The ubiquitous Intel x86 is CISC
• Tablets and smartphones (ARM) taking over?

• x86 breaks down CISC assembly into multiple, RISC-like,
machine language instructions

• Distinction between RISC and CISC is less clear
• Some RISC instruction sets have more instructions than some CISC sets

ISA Examples

• Intel IA-32 (CISC)

• ARM (RISC)

• MIPS (RISC)

• PowerPC (RISC)

• IBM Cell (RISC)

• Motorola 68k (CISC)

• Intel IA-64 (Neither)

• VAX (CISC)

• SPARC (RISC)

• Alpha (RISC)

• IBM 360 (CISC)

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users

• Allows a program to run on any machine
(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

Intel x86 Family (IA-32)

Intel i386 (1985)

• 12 MHz - 40 MHz

• ~300,000 transistors

• Component size: 1.5 µm

Intel Core i9 12900k (late 2021)

• ~4,000 MHz - 5,000 MHz

• ~3,000,000,000 transistors

• Component size: ~7 nm

Everything in this family uses the same ISA (Same instructions)!

This semester… ARM!

• ARM is less complex than x86

• ARM is everywhere (e.g., smart phones)

• Specifically, we'll be using AArch64 (64-bit ARM, ARM64)

Processor State in Registers (ARM64)

• Working memory for currently
executing program

• Address of next instruction to
execute (PC)

• Status of recent ALU tests:

• N: result is negative

• Z: result is zero

• C (carry): unsigned overflow

• V: signed overflow
pc

General-purpose registers

Program Counter (PC)

x0

x1

x2

…

x28

x29

x30

x31

zr Zero Register (always 0)

read
-o

n
ly

N Z C V Condition codes (aka flags)

ARM64 Register Conventions

• Even though x0 - x31 are general-
purpose, some are unofficially
reserved for specific purposes…

• x29 - x31 used to keep track of
function / stack information
(more on this later)

pc

General-purpose registers

Program Counter (PC)

x0

x1

x2

…

x28

x29 (fp)

x30 (lr)

x31 (sp)

zr Zero Register (always 0)

read
-o

n
ly

Frame Pointer

Link Register

Stack Pointer

N Z C V Condition codes (aka flags)

Component registers

• x0 - x31 are 64-bit registers

• Sometimes, you might only want to
store 32 bits (e.g., int variable)

• You can access the lower 32 bits of
a register with a prefix of w rather
than x (e.g., w0, w1, …, w28, w29)

• When accessed this way, the upper
bits will always be 0

pc

General-purpose registers

Program Counter (PC)

N Z C V

x0

x1

x2

…

x28

x29 (fp)

x30 (lr)

x31 (sp)

zr Zero Register (always 0)

read
-o

n
ly

Frame Pointer

Link Register

Stack Pointer

Condition codes (aka flags)

Assembly Programmer’s View of State

CPU
Memory

Addresses

Data

Instructions

Memory:

• Byte addressable array

• Program code and data

• Execution stack

name value

x0

x1

x2

…

x28

x29

x30

x31

pc next instr

addr

N,C,Z,V cond. codes

address value

0x00000000

0x00000001

…

Program:

data

instrs

stack

0xffffffff

Registers

BUS

Types of ARM64 Instructions

• Data movement (move values between registers or memory)
• Move (mov): move data from one register to another

• Load (ldr): move data from memory to register

• Store (str): move data from register to memory

Data Movement

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.

Types of ARM64 Instructions

• Data movement (move values between registers or memory)

• Arithmetic (use ALU to compute a value)
• addition (add)

• subtract (sub)

• Many more…

Arithmetic

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in a register.

Types of ARM64 Instructions

• Data movement (move values between registers or memory)

• Arithmetic (use ALU to compute a value)

• Control (change PC based on ALU condition code state)
• branch (b): change PC to value

• branch if equal (b.eq): change PC if condition codes indicate equality

• branch if less than or equal (b.le): same as above, but for less than or equal

Control

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.

Types of ARM64 Instructions

• Data movement (move values between registers or memory)

• Arithmetic (use ALU to compute a value)

• Control (change PC based on ALU condition code state)

• Stack / Function call (We’ll cover these in detail later)
• Shortcut instructions for common operations

Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

Addressing Mode: Register

• Instructions can refer to the name of a register

• Example:
• mov x4, x15 (Copy the contents of x15 into x4 -- overwrites x4, no change to x15)

Addressing Mode: Immediate

• Also known as "Literal" or "Constant" mode

• Allows programmer to hard-code a number

• Can be either decimal (# prefix) or hexadecimal (#0x prefix)

• Examples:
• mov x0, #42 (Move the decimal constant 42 into register x0)

• add x1, x3, #0x10 (Add hex 0x10 to contents of x3, store result in x1)

Addressing Mode: Memory

• Access the contents of memory by using a memory address contained
in a register.

• Can only be used for the load and store family of instructions
• load: data moves from memory into register (load from memory)

• store: data moves from register into memory (store to memory)

• other instructions cannot access memory directly (e.g, add)

Addressing Mode: Memory

• Access the contents of memory by using a memory address contained in a
register.

• Several different forms for accessing memory

1. access address in register: [register]

• Examples:
• ldr x1, [x7] (Access memory at the address stored in register x7, load data there into x1)
• str x20, [x2] (Store the contents of register x20 at the memory address stored in x2)

Accessing memory requires
brackets []. The brackets are a
giveaway that we're treating

the number in the register as a
memory address.

Addressing Mode: Memory

• ldr x1, [x7] (Access memory at the address stored in register x7, load data there into x1)

(Memory)

name value

x1 0

x7 0x1A68

…

CPU Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Addressing Mode: Memory

• ldr x1, [x7] (Access memory at the address stored in register x7, load data there into x1)

name value

x1 0

x7 0x1A68

…

CPU Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the
address in x7.

0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Addressing Mode: Memory

• ldr x1, [x7] (Access memory at the address stored in register x7, load data there into x1)

name value

x1 42

x7 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in x7.

2. Copy value at that
address to x1.

Addressing Mode: Memory

2. access address in register + immediate: [register, #constant]

3. access address in register + register: [register, register]

• Examples:
• ldr x3, [sp, #8] (Take the value in sp (x31), add 8 to it, and treat the sum as a memory

address. Load the data found at that memory address into register x3.)

• str x2, [x1, x7] (Take the value in x1, add the value stored in x7 to it, and treat the sum
as a memory address. Load the data found at that memory address into register x2.)

Addressing Mode: Memory

• ldr x3, [sp, #8] (Take the value in sp (x31), add 8 to it, and treat the sum as a memory
address. Load the data found at that memory address into register x3.)

(Memory)

name value

x3 0

… 0

sp (x31) 0x1A64

…

CPU Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C 38

0x1A70

…

0xFFFFFFFF:

Addressing Mode: Memory

• ldr x3, [sp, #8] (Take the value in sp (x31), add 8 to it, and treat the sum as a memory
address. Load the data found at that memory address into register x3.)

(Memory)

name value

x3 0

… 0

sp (x31) 0x1A64

…

CPU Registers

1. Compute address:
0x1A64 + 8 => 0x1A6C

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C 38

0x1A70

…

0xFFFFFFFF:

Addressing Mode: Memory

• ldr x3, [sp, #8] (Take the value in sp (x31), add 8 to it, and treat the sum as a memory
address. Load the data found at that memory address into register x3.)

(Memory)

name value

x3 0

… 0

sp (x31) 0x1A64

…

CPU Registers

1. Compute address:
0x1A64 + 8 => 0x1A6C

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C 38

0x1A70

…

0xFFFFFFFF:

Addressing Mode: Memory

• ldr x3, [sp, #8] (Take the value in sp (x31), add 8 to it, and treat the sum as a memory
address. Load the data found at that memory address into register x3.)

(Memory)

name value

x3 38

… 0

sp (x31) 0x1A64

…

CPU Registers

1. Compute address:
0x1A64 + 8 => 0x1A6C

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C 38

0x1A70

…

0xFFFFFFFF:

2. Copy value at that
address to x3.

Other ways of accessing memory

• Other memory forms, see table at bottom of book section 9.1.

• Other instructions that load / store two registers at once, see table 2
in book section 9.2.

• In general, I'll expect you to be able to read / understand those
instructions with the help of the cheat sheet. You don't need to
generate them on your own though. They often help with compiler
optimizations.

Let’s try a few examples...

What will the machine state be after executing these
instructions?
(Bonus: write an equivalent one-line expression in C code)

ldr x0, [sp, #8]

ldr x1, [sp, #16]

lsl x1, x1, #3

mul x1, x0, x1

ldr x0, [sp]

add x1, x0, x1

str x1, [sp, #16]

Memory

Address Value C variable

0x1260 2 x

0x1268 3 y

0x1270 2 z

… … …

Registers

Name Value

x0

x1

… …

x31 (sp) 0x1260

What will the machine state be after executing these
instructions?
(Bonus: write an equivalent one-line expression in C code)

ldr x0, [sp, #8]

ldr x1, [sp, #16]

lsl x1, x1, #3

mul x1, x0, x1

ldr x0, [sp]

add x1, x0, x1

str x1, [sp, #16] Memory

Address Value C variable

0x1260 2 x

0x1268 3 y

0x1270 48 z

… … …

Registers

Name Value

x0 3

x1 48

… …

x31 (sp) 0x1260

Memory

Address Value C variable

0x1260 50 x

0x1268 3 y

0x1270 2 z

… … …

Registers

Name Value

x0 50

x1 2

… …

x31 (sp) 0x1260

Memory

Address Value C variable

0x1260 2 x

0x1268 3 y

0x1270 50 z

… … …

Registers

Name Value

x0 2

x1 50

… …

x31 (sp) 0x1260

A.

B.

C.

What will the machine state be after executing these
instructions?
(Bonus: write an equivalent one-line expression in C code)

ldr x0, [sp, #8]

ldr x1, [sp, #16]

lsl x1, x1, #3

mul x1, x0, x1

ldr x0, [sp]

add x1, x0, x1

str x1, [sp, #16]

Memory

Address Value C variable

0x1260 2 x

0x1268 3 y

0x1270 2 z

… … …

Registers

Name Value

x0

x1

… …

x31 (sp) 0x1260

What will the machine state be after executing these
instructions?
(Bonus: write an equivalent one-line expression in C code)

ldr x0, [sp, #8] x0  y

ldr x1, [sp, #16] x1  z

lsl x1, x1, #3 x1  x1 << 3

mul x1, x0, x1 x1  x0 * x1

ldr x0, [sp] x0  x

add x1, x0, x1 x1  x0 + x1

str x1, [sp, #16] z  x1

C Expression:

Memory

Address Value C variable

0x1260 2 x

0x1268 3 y

0x1270 50 z

… … …

Registers

Name Value

x0 2

x1 50

… …

x31 (sp) 0x1260

What will the machine state be after executing these
instructions?
(Bonus: write an equivalent one-line expression in C code)

ldr x0, [sp, #8] x0  y

ldr x1, [sp, #16] x1  z

lsl x1, x1, #3 x1  x1 << 3

mul x1, x0, x1 x1  x0 * x1

ldr x0, [sp] x0  x

add x1, x0, x1 x1  x0 + x1

str x1, [sp, #16] z  x1

C Expression: z = z * 8 * y + x

Memory

Address Value C variable

0x1260 2 x

0x1268 3 y

0x1270 50 z

… … …

Registers

Name Value

x0 2

x1 50

… …

x31 (sp) 0x1260

z * 8 * y

What will the machine state be after executing these
instructions?

ldr x0, [sp]

ldr x1, [sp, #-16]

orr x0, x0, #15

neg x1, x0

stp x0, x1, [sp, #8]
Memory

Address Value

0xFF00 5

0xFF08 11

0xFF10 7

0xFF18 9

0xFF20 13

… …

Registers

Name Value

x0

x1

… …

x31 (sp) 0xFF10

How might you execute this C statement in
ARM64 assembly?
z = x ^ y

Memory

Address Value C variable

0x3228 x

0x3230 y

0x3238 z

… … …

Registers

Name Value

x0

x1

… …

x31 (sp) 0x3230

How might you execute this C statement in
ARM64 assembly?
z = x ^ y

Memory

Address Value C variable

0x3228 x

0x3230 y

0x3238 z

… … …

Registers

Name Value

x0

x1

… …

x31 (sp) 0x3230

ldr x0, [sp, #8]
ldr x1, [sp]
eor x0, x0, x1
str x0, [sp, #-8]

A:
ldr x0, [sp, #-8]
ldr x1, [sp]
eor x0, x0, x1
str x0, [sp, #8]

B:

I came up with some
other way.C:

How might you execute this C statement in
ARM64 assembly?
z = (z - 5) & ~y

Memory

Address Value C variable

0x3228 x

0x3230 y

0x3238 z

… … …

Registers

Name Value

x0

x1

… …

x31 (sp) 0x3230

(1) z = x ^ y

ldr x0, [sp, #-8] x0  x

ldr x1, [sp] x1  y

eor x0, x0, x1 x0  x0 ^ x1

str x0, [sp, #8] z  x0

(2) z = (z - 5) & ~y

ldr x0, [sp] x0  y

mvn x0, x0 x0  ~x0

ldr x1, [sp, #8] x1  z

sub x1, x1, #5 x1  x1 - 5

and x1, x0, x1 x1  x0 & x1

str x1, [sp, #8] z  x1

Memory

Address Value C variable

0x3228 x

0x3230 y

0x3238 z

… … …

Registers

Name Value

x0

x1

… …

x31 (sp) 0x3230

These are each just one
example of many ways to

execute these C statements
in ARM64 assembly!

Control Flow

• Previous examples focused on:
• data movement (mov, ldr, str)

• arithmetic (add, sub, orr, neg, lsl, etc.)

• Up next: branching (aka jumping)!

(Changing which instruction
we execute next.)

Relevant XKCD

xkcd #292

https://xkcd.com/292/

Unconditional branching / goto

int func(void) {
int a = 10;
int b = 20;

goto label1;
a = a + b;

label1:
return a;

}

A label is a place you might jump to.

Labels ignored except for goto/branches.

(Skipped over if encountered)

int x = 20;
Label1:
int y = x + 30;

Label2:
printf(“%d, %d\n”, x, y);

ARM64 Labels

• Label represents a place to which you might branch
• The assembler determines the address of the label

• The address will often be displayed as an offset from the start of a function

• For "local" labels (the kind you'll be writing for if/else and loops):
• Convention says to prefix them with a . character

• e.g., .L1:

Unconditional branching / goto

int func(void) {
int a = 10;
int b = 20;

goto label1;
a = a + b;

label1:
return a;

}

mov w0, #10
mov w1, #20

b .L1
add w0, w0, w1

.L1:
ret

Note, we declared 'int'
variables (32-bit), so we
use the w register prefix!

Unconditional branching / goto

• Uses for unconditional branching:
• (intentional) infinite loop

• break

• continue

• function calls (handled differently than just b instruction)

• Often, we only want to branch when something is true / false.

• Need a way to compare values, branch based on comparison results.

Condition Codes (or "Flags")

• Set in two ways:
1. In response to explicit comparison instructions

2. As “side effects” produced by ALU with instructions suffixed by s
• e.g., adds subs

• ARM64, condition codes tell you:
• N: the result of the ALU operation is negative (high-order bit is 1)

• Z: the result of the ALU operation is zero

• C (carry): the result, if interpreted as unsigned, has overflowed

• V: the result, if interpreted as signed, has overflowed

Instructions that set condition codes

1. Arithmetic/logic side effects (adds, subs, ands, etc.)

2. CMP and TEST:
cmp a, b like computing a-b without storing result

• Sets V if overflow, Sets C if carry-out,
Sets Z if result is zero, Sets N if result is negative

tst a, b like computing a&b without storing result
• Sets Z if result is zero, sets N if result is negative

V and C flags are zero (there is no overflow with &)

Which flags would this subs set?

• Suppose x0 holds 5, x1 holds 7

subs x0, x0, #5

If the result is zero (Z)
If the result’s first bit is set (negative if signed) (N)
If the result overflowed (assuming unsigned) (C)
If the result overflowed (assuming signed) (V)

A. Z
B. N
C. C and Z
D. C and N
E. C, N, and V

Which flags would this cmp set?

• Suppose x0 holds 5, x1 holds 7

cmp x0, x1

If the result is zero (Z)
If the result’s first bit is set (negative if signed) (N)
If the result overflowed (assuming unsigned) (C)
If the result overflowed (assuming signed) (V)

A. Z
B. N
C. C and Z
D. C and N
E. C, N, and V

Conditional Branching
• b.SUFFIX: branch based on which condition codes are set

Instruction Condition Description

b 1 Unconditional

b.eq Z Equal / Zero

b.ne ~Z Not Equal / Not Zero

b.mi N Negative

b.Pl ~N Nonnegative

b.gt ~(N^V)& ~Z Greater (Signed)

b.ge ~(N^V) Greater or Equal (Signed)

b.lt (N^V) | ~Z Less (Signed)

b.le (N^V) Less or Equal (Signed)

See book section 9.4.1

You do not need to
memorize these!

Example Scenario
long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

userval += 5;

} else {

userval -= 10;

}

…

• Suppose user gives us a
value via scanf

• We want to check to
see if it equals 42
• If so, add 5

• If not, subtract 10

How might we use branches/CCs for this?

Assume userval is stored in register x0 at this point.

long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

userval += 5;

} else {

userval -= 10;

}

…

How would we use jumps/CCs for this?

Assume userval is stored in register x0 at this point.

cmp x0, #42
b.ne .L2

.L1:
sub x0, x0, #10
b .DONE

.L2:
add x0, x0, #5

.DONE:
…

(B)cmp x0, #42
b.eq .L2

.L1:
sub x0, x0, #10
b .DONE

.L2:
add x0, x0, #5

.DONE:
…

(A) cmp x0, #42
b.ne .L2

.L1:
add x0, x0, #5
b .DONE

.L2:
sub x0, x0, #10

.DONE:
…

(C)

long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

userval += 5;

} else {

userval -= 10;

}

…

Loops

• We’ll look at these in the lab!

Summary

• ISA defines what programmer can do on hardware
• Which instructions are available
• How to access state (registers, memory, etc.)
• This is the architecture’s assembly language

• In this course, we’ll be using ARM64 (AArch64)
• Instructions for:

• moving data (mov, ldr, str)
• arithmetic (add, sub, mul, orr, lsl, etc.)
• control (b, b.eq, b.ne, etc.)

• Condition codes for making control decisions
• If the result is zero (Z)
• If the result’s first bit is set (negative if signed) (N)
• If the result overflowed (assuming unsigned) (C)
• If the result overflowed (assuming signed) (V)

