CS 31: Intro to Systems
Binary Arithmetic

Kevin Webb
Swarthmore College
September 8, 2022

Reading Quiz

Unsigned Integers

* Suppose we had one byte
e Can represent 28 (256) values
e If unsigned (strictly non-negative): 0 — 255

252 =11111100 Traditional number line:
253 =11111101 Addition
254 =11111110 0 255 Larger

Values

255=11111111

Unsigned Integers

* Suppose we had one byte
e Can represent 28 (256) values
e If unsigned (strictly non-negative): 0 — 255

252 =11111100 Car odometer “rolls over”.
253 =11111101 " Bgytﬂyﬁ
aYaYaYa¥all

254 =11111110
255=11111111
What if we add one more?

Unsigned Integers

* Suppose we had one byte
e Can represent 28 (256) values
e If unsigned (strictly non-negative): 0 — 255
255 (11111111)

0 Addition
252 = 11111100 N\
253 = 11111101
254 = 11111110 192 o4

255=11111111

What if we add one more? =

Modular arithmetic: Here, all values are modulo 256. (10000000)

Unsigned Addition (4-bit)

* Addition works like grade school addition:

1

0110 o
+ 0100 + 4

1010 10

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

* Addition works like grade school addition:

1

0110 0 1100 12
+ 0100 + 4 + 1010 +10

1010 10 1 0110 o

~“carry out

Four bits give us range: 0 - 15

Overflow!

Suppose we want to support signed values
too (positive and negative). Where should
we put -1 and -127 on the circle? Why?

11111111) -1(11111111)

127 (
0 \ 0

i

-1 -127

C: Put them somewhere else.

Signed Magnitude

* One bit (usually left-most) signals:
* O for positive 127 1
1 for negative

For one byte:
1 =00000001, -1 =10000001

Pros: Negation is very simple!

Signed Magnitude

* One bit (usually left-most) signals:
* O for positive 127 1
1 for negative

For one byte:
0 = 00000000
What about 100000007

Major con: Two ways to represent zero.

Two’s Complement (signed)

* Borrow nice property from number line:

o
11

Only one instance of zero!
Implies: -1 and 1 on either side of it.

Two’'s Complement

* Borrow nice property from number line:

-1 1
o \ ¢
-1 1
Only one instance of zero!
Implies: -1 and 1 on either side of it.
-127| 127

-128

Two’s Complement

* Only one value for zero

* With N bits, can represent the range:
« 2N1g N1

e First bit still designates positive (0) /negative (1)

* Negating a value is slightly more complicated:
1 =00000001, -1=11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers
are stored using two’s complement! This is the standard!

Two’s Compliment

e Each two’s compliment number is now:
[-2n1*%d] + [2n-2*d L] +.+ [21*d,] + [20%*d,]

Note the negative sign on just the first digit. This is why first digit
tells us negative vs. positive.

If we interpret 11001 as a two's
complement number, what is the value
in decimal?

e Each two’s compliment number is now:
[-2m1*d] + [2n2*%d] +.+ [21*d,] + [2°%*d,]

“It we interpret...”

e What is the decimal value of 11007

e ...as unsigned, 4-bit value: 12 (%u)
e ...as signed (two’s comp), 4-bit value: -4 (%d)

e ...as an 8-bit value: 12
(i.e., 00001100)

Two’'s Complement Negation

* To negate a value x, we want to find y such that x + y = 0.

_1 1

\ 0
* For N bits, y = 2N - x

-127| 127

-128

Negation Example (8 bits)

* For N bits, y = 2N - x
* Negate 00000010 (2) -1 1

\ 0
e 28-2=256-2=254
* Our wheel only goes to 127!
e Put-2 where 254 would be
if wheel was unsigned.
* 254 in binary is 11111110
-127| 127
Given 11111110, it’s 254 if interpreted as "128

unsigned and -2 interpreted as signed.

Negation Shortcut

* A much easier, faster way to negate:

* Flip the bits (0’s become 1’s, 1’'s become 0’s)
 Add 1

* Negate 00101110 (46)
e 28-46=256-46=210
* 210 in binary is 11010010

Addition & Subtraction

e Addition is the same as for unsigned
* One exception: different rules for overflow
e Can use the same hardware for both

e Subtraction is the same operation as addition
 Just need to negate the second operand...

e6-7=6+(-7)=6+(~7+1)
» ~7 is shorthand for “flip the bits of 7”

Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6-7==6+~7+1

input 2 -->possible bit flipper|-->

possible +1 input-------- >

ADD CIRCUIT

---> result

Overflow, Revisited

255
0

192 Unsigned 64

128

-128

If we add a positive number and a
negative number, will we have
overflow? (Assume they are the same # of bits)

A. Always
B. Sometimes

C. Never

-128

Signed Overflow

* Overflow: IFF the sign bits of operands are the same, but the sign bit of result is
different.

* Not enough bits to store result!

Signed addition (and subtraction):
24+-1=1 2+-2=0 2+-4==-2

0010 0010 0010
+1111 +1110 +1100
1 0001 1 0000 1110

No chance of overflow here - signs
of operands are different!

-128

Signed Overflow

* Overflow: IFF the sign bits of operands are the same, but the sign bit of result is
different.

* Not enough bits to store result!

Signed addition (and subtraction):

24-1=1 2+-2=0 2+-4=-2 247=-7 =2+-T7=7
0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110 1001 1 0111

\ J
|

Overflow here! Operand signs are the
same, and they don’t match output sign!

Overflow Rules

* Signed:

* The sign bits of operands are the same, but the sign bit of result is different.

* Can we formalize unsigned overflow?
* Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6-7==6+~7+1

input 2 --> possible bit flipper -->

possible +1 input-------- >

ADD CIRCUIT

Let’s call this +1 input: “Carry in”

---> result

How many of these unsigned
operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0) \? J
9 + 11 = 1001 + 1011 + 0 = 1 0100
9+ 6 = 1001 + 0110 + 0 = 0 1111
3+ 6 = 0011 + 0110 + 0 = 0 1001
Subtraction (carry-in = 1) (_f)
6 - 3 = 0110 + 1100 + 1 =1 0011

3 - 6 = 0011 + 1001 + 1 =0 1101
\

m o 0O o >
U b W NN =

How many of these unsigned
operations have overflowed?

Interpret these as 4-bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0) \? J
9 + 11 = 1001 + 1011 + 0 = 1 0100 =
9+ 6 = 1001 + 0110 + 0 = 0 1111 =
3+ 6 = 0011 + 0110 + 0 = 0 1001 =
Subtraction (carry-in = 1) (_f)
6 - 3 = 0110 + 1100 + 1 =1 0011 =

3 - 6 = 0011 + 1001 + 1 =0 1101 =
\

¥
(-6)

Pattern?

m o 0O o >
U b W NN =

Overflow Rule Summary

* Signed overflow:
* The sign bits of operands are the same, but the sign bit of result is different.

e Unsigned: overflow
* The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0 0 0
0 1 1
1 0 1
1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Sign Extension

* When combining signed values of different sizes, expand the
smaller value to equivalent larger size:

char y=2, x=-13;
short z = 10;

z = zZ t+ vy Z = zZ T X3
0000000000001010 0000000000000101
+ 00000010 + 11110011
0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get same numeric
value in larger number of bytes.

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?
0111 ---> 00000111 obviously still 7
1010 ---->11111010 s this still -6?

-128+64+32 +16+ 8+0+2+0= -6 vyes!

Operations on Bits

* For these, doesn’t matter how the bits are interpreted (signed vs.
unsigned)

* Bit-wise operators (AND, OR, NOT, XOR)

* Bit shifting

Bit-wise Operators

* bit operands, bit result (interpret as you please)

& (AND) | (OR) ~(NOT) A~(XOR)

A B A & B A | B ~A A " B

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

01010101 01101010 10101010 ~10101111
| 00100001 & 10111011 ~ 01101001 01010000

01110101 00101010 11000011

More Operations on Bits

 Bit-shift operators: << left shift, >> right shift

01010101 << 2 1is 01010100
2 high-order bits shifted out
2 low-order bits filled with O
01101010 << 4 1is 10100000
01010101 >> 2 dis 00010101
01101010 >> 4 is 00000110

10101100 >> 2 1s 00101011 (logical shift)
or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type:
signed: arithmetic, unsigned: logical

Up Next

e Circuits

