
CS 31: Intro to Systems
Binary Representation

Kevin Webb

Swarthmore College

September 6, 2022

Announcements

• Check your clicker registration on EdSTEM

Reading Quiz

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Today

• Number systems and conversion

• Data types and storage:
• Sizes

• Representation

• Signedness

Data Storage

• Lots of technologies out there:
• Magnetic (hard drive, floppy disk)
• Optical (CD / DVD / Blu-Ray)
• Electronic (RAM, registers, …)

• Focus on electronic for now
• We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
• Voltage present
• Voltage absent

Bits and Bytes

• Bit: a 0 or 1 value (binary)
• HW represents as two different voltages

• 1: the presence of voltage (high voltage)

• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …

(address) [0] [1] [2] …

• Other names:
• 4 bits: Nibble

• “Word”: Depends on system, often 4 bytes

Bits and Bytes

• One bit: two values (0 or 1)

• Two bits: four values (00, 01, 10, or 11)

• Three bits: eight values (000, 001, …, 110, 111)

A. 18

B. 81

C. 256

D. 512

E. Some other number of values.

How many unique values can we represent
with 9 bits? Why?
• One bit: two values (0 or 1)

• Two bits: four values (00, 01, 10, or 11)

• Three bits: eight values (000, 001, …, 110, 111)

A. 18

B. 81

C. 256

D. 512

E. Some other number of values.

How many values?
1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

C types and their (typical!) sizes
• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

unsigned long v1;

short s1;

long long ll;

// prints out number of bytes

printf(“%lu %lu %lu\n”, sizeof(v1), sizeof(s1), sizeof(ll));

How do we use this storage space (bits) to represent a value?

WARNING: These sizes are NOT a
guarantee. Don't always assume that

every system will use these values!

Let’s start with what we know…

• Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

64025

Digit #0Digit #4

What is the significance of the ith digit
number in this number system? What does
it contribute to the overall value?

64025

A. di * 1

B. di * 10

C. di * 10i

D. di * N10

E. di * 10di

Digit #0
(d0)

Digit #4
(d4)

Consider the meaning of d3 (the value 4) above.
What is it contributing to the total value?

Decimal: Base 10

• Favored by humans…

• A number, written as the sequence of digits
dn-1…d2d1d0 where d is in {0,1,2,3,4,5,6,7,8,9},
represents the value:

[dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

64025 =

6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Generalizing

• The meaning of a digit depends on its position in a
number.

• A number, written as the sequence of N digits dn-1…d2d1d0
in base b represents the value:

[dn-1 * bn-1] + [dn-2 * bn-2] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

Binary: Base 2

• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits
dn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

What is the value of 0b110101 in decimal?

• A number, written as the sequence of N digits
dn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26

B. 53

C. 61

D. 106

E. 128

Other (common) number systems.

• Base 10: decimal

• Base 2: binary

• Base 16: hexadecimal

• Base 8: octal

• Base 64

Hexadecimal: Base 16

• Indicated by prefixing number with 0x

• A number, written as the sequence of N digits dn-1…d2d1d0 where d is
in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the value:

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

What is the value of 0x1B7 in decimal?

A. 397

B. 409

C. 419

D. 437

E. 439

(Note: 162 = 256)

Important Point…

• You can represent the same value in a variety of number
systems or bases.

• It’s all stored as binary in the computer.
• Presence/absence of voltage.

Other (common) number systems.

• Base 2: How data is stored in hardware.

• Base 8: Used to represent file permissions.

• Base 10: Preferred by people.

• Base 16: Convenient for representing memory addresses.

• Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer!

Hexadecimal: Base 16

• Fewer digits to represent same value
• Same amount of information!

• Like binary, base is power of 2

• Each digit is a “nibble”, or half a byte.

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth
of information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1

Four-bit value: B (decimal 11)

Four-bit value: 7

In binary: 0001 1011 0111

1 B 7

Converting Decimal -> Binary

• Two methods:
• division by two remainder

• powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith digit):

i = 0

while (D > 0)

if D is odd

set bi to 1

if D is even

set bi to 0

i++

D = D/2

idea: example: D = 105 b0 = 1

D = b D = 52 a1 = 0

D/2 = b/2 D = 26 a2 = 0

D/2 = b/2 D = 13 a3 = 1

D/2 = b/2 D = 6 a4 = 0

D/2 = b/2 D = 3 a5 = 1

0 = 0 D = 1 a6 = 1

D = 0 a7 = 0

105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):

i = 0

while (D > 0)

if D is odd

set bi to 1

if D is even

set bi to 0

i++

D = D/2

idea: D example: D = 105 b0 = 1

D = D/2 D = 52 b1 = 0

D/2 = b/2 D = 26 a2 = 0

D/2 = b/2 D = 13 a3 = 1

D/2 = b/2 D = 6 a4 = 0

D/2 = b/2 D = 3 a5 = 1

0 = 0 D = 1 a6 = 1

D = 0 a7 = 0

105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):

i = 0

while (D > 0)

if D is odd

set bi to 1

if D is even

set bi to 0

i++

D = D/2

idea: D example: D = 105 b0 = 1

D = D/2 D = 52 b1 = 0

D = D/2 D = 26 b2 = 0

D = D/2 D = 13 b3 = 1

D = D/2 D = 6 b4 = 0

D = D/2 D = 3 b5 = 1

D = D/2 D = 1 b6 = 1

D = 0 (done) D = 0 b7 = 0

105 = 01101001

Example: Converting 105

Method 2
• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128

• To convert 105:
• Find largest power of two that’s less than 105 (64)

• Subtract 64 (105 – 64 = 41), put a 1 in d6

• Subtract 32 (41 – 32 = 9), put a 1 in d5

• Skip 16, it’s larger than 9, put a 0 in d4

• Subtract 8 (9 – 8 = 1), put a 1 in d3

• Skip 4 and 2, put a 0 in d2 and d1

• Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

What is the value of 357 in binary?

A. 101100011

B. 101100101

C. 101101001

D. 101110101

E. 110100101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64, 27 = 128, 28 = 256

So far: Unsigned Integers

• With N bits, can represent values: 0 to 2n-1

• We can always add 0’s to the front of a number without changing it:

10110= 010110 = 00010110 = 0000010110

• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

Representing Signed Values

• One option (used for floats, NOT integers)
• Let the first bit represent the sign

• 0 means positive

• 1 means negative

• For example:
• 0101 -> 5

• 1101 -> -5

• Problem with this scheme?

Floating Point Representation
1 bit for sign sign | exponent | fraction |

8 bits for exponent

23 bits for precision

value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010

sign = 0 exp = 129 fraction = 2902458

= 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this

Up Next: Binary Arithmetic

