
CS 31: Intro to Systems
Operating Systems Overview

Kevin Webb

Swarthmore College

November 8, 2018

Reading Quiz

OS Big Picture Goals

• OS is an extra code layer between user
programs and hardware.

• Goal: Make life easier for users and
programmers.

• How can the OS do that?

If you were asked to design a layer
between user programs and the
hardware, what might your layer provide?

• What sort of services might the programs
you’ve written need?

• (Discuss with your neighbors.)

Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource sharing

3. Hardware gatekeeping and protection

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

Before Operating Systems

• One program executed at a time…

Why is it not ideal to have only a single
program available to the hardware?

A. The hardware might run out of work to do.

B. The hardware won’t execute as quickly.

C. The hardware’s resources won’t be used as
efficiently.

D. Some other reason(s). (What?)

Today: Multiprogramming

• Multiprogramming: have multiple programs
available to the machine, even if you only
have one CPU core that can execute them.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

How many programs do you think are
running on a typical desktop?
A. 1-10

B. 20-40

C. 40-80

D. 80-160

E. 160+

Running multiple programs

• Benefits: when I/O issued, CPU not needed

– Allow another program to run

– Requires yielding and sharing memory

• Challenges: what if one running program…

– Monopolizes CPU, memory?

– Reads/writes another’s memory?

– Uses I/O device being used by another?

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

• Into desirable conveniences: illusions

– Simple, easy-to-use resources

– Multiple/unlimited number of processors

– Large/unlimited amount of memory

Virtualization

• Rather than exposing real hardware, introduce a
“virtual”, abstract notion of the resource

• Multiple virtual processors
– By rapidly switching CPU use

• Multiple virtual memories
– By memory partitioning and re-addressing

• Virtualized devices
– By simplifying interfaces, and using other resources to

enhance function

We’ll focus on the OS ‘kernel’

• “Operating system” has many interpretations

– E.g., all software on machine minus applications
(user or even limited to 3rd party)

• Our focus is the kernel

– What’s necessary for everything else to work

– Low-level resource control

– Originally called the nucleus in the 60’s

The Kernel

• All programs depend on it

– Loads and runs them

– Exports system calls to programs

• Works closely with hardware

– Accesses devices

– Responds to interrupts

• Allocates basic resources

– CPU time, memory space

– Controls I/O devices: display, keyboard, disk, network

Kernel provides common functions

• Some functions useful to many programs
– I/O device control

– Memory allocation

• Place these functions in central place (kernel)
– Called by programs (system calls)

– Or accessed implicitly

• What should functions be?
– How many programs should benefit?

– Might kernel get too big?

Main Abstraction: The Process

• Abstraction of a running program

– “a program in execution”

• Dynamic

– Has state, changes over time

– Whereas a program is static

• Basic operations

– Start/end

– Suspend/resume

Basic Resources for Processes

• To run, process needs some basic resources:

– CPU

• Processing cycles (time)

• To execute instructions

– Memory

• Bytes or words (space)

• To maintain state

– Other resources (e.g., I/O)

• Network, disk, terminal, printer, etc.

What sort of information might the OS
need to store to keep track of a
running process?

• That is, what MUST an OS know about a
process?

• (Discuss with your neighbors.)

Machine State of a Process

• CPU or processor context
– PC (program counter)

– SP (stack pointer)

– General purpose registers

• Memory
– Code

– Global Variables

– Stack of activation records / frames

– Other (registers, memory, kernel-related state)

Must keep track of these
for every running process !

Resource Sharing

Reality

• Multiple processes

• Small number of CPUs

• Finite memory

Abstraction

• Process is all alone

• Process is always running

• Process has all the memory

P1

P2

P3

time

CPU: Time Memory: Space

P1
P2

P3

Resource: CPU

• Many processes, limited number of CPUs.

• Each process needs to make progress over
time. Insight: processes don’t know how
quickly they should be making progress.

• Illusion: every process is making progress in
parallel.

Timesharing: Sharing the CPUs

• Abstraction goal: make every process think it’s
running on the CPU all the time.

– Alternatively: If a process was removed from the CPU
and then given it back, it shouldn’t be able to tell

• Reality: put a process on CPU, let it run for a
short time (~10 ms), switch to another, …
(context switching)

Resource: Memory

• Abstraction goal: make every process
think it has the same memory layout.

– MUCH simpler for compiler if the stack
always starts at 0xFFFFFFFF, etc.

Operating system

Stack

Text

Data

Heap

Memory

• Abstraction goal: make every process
think it has the same memory layout.

– MUCH simpler for compiler if the stack
always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory
to go around, and no two processes
should use the same (physical) memory
addresses (unless they’re sharing).

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track
of who’s using each memory region.

Virtual Memory: Sharing Storage

• Like CPU cache, memory is a cache for disk.

• Processes never need to know where their
memory truly is, OS translates virtual
addresses into physical addresses for them.

P1 P2 P3

P1
P2

P3

Kernel Execution

• Great, the OS is going to somehow give us
these nice abstractions.

• So…how / when should the kernel execute to
make all this stuff happen?

The operating system kernel…

A. Executes as a process.

B. Is always executing, in support of other processes.

C. Should execute as little as possible.

D. More than one of the above. (Which ones?)

E. None of the above.

Process vs. Kernel

• Is the kernel itself a process?

– No, it supports processes and devices

• OS only runs when necessary…

– as an extension of a process making system call

– in response to a device issuing an interrupt

Process vs. Kernel

• The kernel is the code that supports processes

– System calls: fork (), exit (), read (), write (), …

– System management: context switching,
scheduling, memory management

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Code:

Data:

Code:

Code +
Data:

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap
Makes system call.
OS accesses device,
assigns resource, etc.

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

OS has control. It will
take care of process’s
request, but it might
take a while.

It can context switch
(and usually does at
this point).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

OS returns control to
a process (not usually
the same one).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Transition is expensive,
but often necessary.

Control over the CPU

• To context switch processes, kernel must get
control:

1. Running process can give up control voluntarily
– To block, call yield () to give up CPU

– Process makes a blocking system call, e.g., read ()

– Control goes to kernel, which dispatches new process

2. CPU is forcibly taken away: preemption

How might the OS forcibly take control
of a CPU?

A. Ask the user to give it the CPU.

B. Require a program to make a system call.

C. Enlist the help of a hardware device.

D. Some other means of seizing control (how?).

CPU Preemption

1. While kernel is running, set a hardware timer.

2. When timer expires, a hardware interrupt is
generated. (device asking for attention)

3. Interrupt pauses process on CPU, forces control
to go to OS kernel.

4. OS is free to perform a context switch.

Up next…

• How we create/manage processes.

• How we provide the illusion of the same
enormous memory space for all processes.

