
CS 31: Intro to Systems
Arrays, Structs, Strings, and Pointers

Kevin Webb

Swarthmore College

October 23, 2018

Reading Quiz

Overview

• Accessing things via an offset

– Arrays, Structs, Unions

• How complex structures are stored in memory

– Multi-dimensional arrays & Structs

So far: Primitive Data Types

• We’ve been using ints, floats, chars, pointers

• Simple to place these in memory:
– They have an unambiguous size

– They fit inside a register*

– The hardware can operate on them directly

(*There are special registers for floats and
doubles that use the IEEE floating point format.)

Composite Data Types

• Combination of one or more existing types into a new
type. (e.g., an array of multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item

(pointer)

struct queue_node{

int value;

struct queue_node *next;

}

Recall: Arrays in Memory

Heap (or Stack)

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Recall: Assembly While Loop

movl $0 eax

movl $0 edx

loop:

addl (%ecx), %eax

addl $4, %ecx

addl $1, %edx

cmpl $5, %edx

jne loop

Using (dereferencing) the
memory address to access
memory at that location.

Manipulating the pointer to
point to something else.

Note: This did NOT read or
write the memory that is
pointed to.

Pointer Manipulation: Necessary?

• Previous example: advance %ecx to point to next
item in array.

iptr = malloc(…);

sum = 0;

while (i < 4) {

sum += *iptr;

iptr += 1;

i += 1;

}

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

Pointer Manipulation: Necessary?

• Previous example: advance %ecx to point to next
item in array.

iptr = malloc(…);

sum = 0;

while (i < 4) {

sum += *iptr;

iptr += 1;

i += 1;

}

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]…

1st

2nd

3rd

iptr:

Reminder: addition on a pointer advances by
that many of the type (e.g., ints), not bytes.

Pointer Manipulation: Necessary?

• Problem: iptr is changing!

• What if we wanted to free it?

• What if we wanted something like this:
iptr = malloc(…);

sum = 0;

while (i < 4) {

sum += iptr[0] + iptr[i];

iptr += 1;

i += 1;

}
Changing the pointer would be
really inconvenient now!

Base + Offset

• We know that arrays act as a pointer to the
first element. For bucket [N], we just skip
forward N.

• “We’re goofy computer scientists who count
starting from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]

Base + Offset

• We know that arrays act as a pointer to the
first element. For bucket [N], we just skip
forward N.

• “We’re goofy computer scientists who count
starting from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]

Base + Offset

• We know that arrays act as a pointer to the
first element. For bucket [N], we just skip
forward N.

int val[5];

val[0] val[1] val[2] val[3] val[4]

Base Offset (stuff in [])

This is why we start counting from zero!
Skipping forward with an offset of zero ([0]) gives us the first bucket…

Which expression would compute
the address of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

What if this isn’t known at compile time?

Indexed Addressing Mode

• What we’d like in IA32 is to express accesses like iptr[N],
where iptr doesn’t change – it’s a base.

• Displacement mode works, if we know which offset to
use at compile time:
– Variables on the stack: -4(%ebp)
– Function arguments: 8(%ebp)
– Accessing [5] of an integer array: 20(%base_register)

• If we only know at run time?
– How do we express i(%ecx)?

Indexed Addressing Mode

• General form:

displacement(%base, %index, scale)

• Translation: Access the memory at address…
– base + (index * scale) + displacement

• Rules:
– Displacement can be any 1, 2, or 4-byte value

– Scale can be 1, 2, 4, or 8.

Suppose i is at %ebp - 8, and equals 2.

User says:

iptr[i] = 9;

Translates to:

movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824

%edx 2
Registers:

ECX: Array base address

Suppose i is at %ebp - 8, and equals 2.

User says:

iptr[i] = 9;

Translates to:

movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824

%edx 2
Registers:

Suppose i is at %ebp - 8, and equals 2.

User says:

iptr[i] = 9;

Translates to:

movl -8(%ebp), %edx

movl $9, (%ecx, %edx, 4)

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824

%edx 2
Registers:

Suppose i is at %ebp - 8, and equals 2.

User says:

iptr[i] = 9;

Translates to:

movl -8(%ebp), %edx

movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + 0

0x0824 + 8 = 0x082C

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824

%edx 2
Registers:

What is the final state after this code?

addl $4, %eax

movl (%eax), %eax

sall $1, %eax

movl %edx, (%ecx, %eax, 2)

%eax 0x2464

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:

Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Indexed Addressing Mode

• General form:

displacement(%base, %index, scale)

• You might see some of these in your maze.

Two-dimensional Arrays

• Why stop at an array of ints?
How about an array of arrays of ints?

int twodims[3][4];

• “Give me three sets of four integers.”

• How should these be organized in memory?

Two-dimensional Arrays

int twodims[3][4];

for(i=0; i<3; i++) {

for(j=0; j<4; j++) {

twodims[i][j] = i+j;

}

}

0 1 2 3

1 2 3 4

2 3 4 5

twodims[0]

twodims[1]

twodims[2]

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

Two-dimensional Arrays: Matrix

int twodims[3][4];

for(i=0; i<3; i++) {

for(j=0; j<4; j++) {

twodims[i][j] = i+j;

}

}

0 1 2 3twodims[0]

1 2 3 4twodims[1]

2 3 4 5twodims[2]

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3

1 2 3 4

2 3 4 5

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Row Major Order:
all Row 0 buckets,
followed by
all Row 1 buckets

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3

1 2 3 4

2 3 4 5

twodim[1][3]:

base addr + row offset + col offset

twodim + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

If we declared int matrix[5][3];,
and the base of matrix is 0x3420, what is
the address of matrix[3][2]?

A. 0x3438

B. 0x3440

C. 0x3444

D. 0x344C

E. None of these

Composite Data Types

• Combination of one or more existing types into a new
type. (e.g., an array of multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item

(pointer)

struct queue_node{

int value;

struct queue_node *next;

}

Structs

• Laid out contiguously by field
– In order of field declaration.

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs

• Struct fields accessible as a base + displacement
– Compiler knows (constant) displacement of each field

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs

• Laid out contiguously by field
– In order of field declaration.

– May require some padding, for alignment.

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:

0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:

0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:

0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …

Why do we want to align data on
multiples of the data size?
A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Data Alignment: Why?

• Simplify hardware

– e.g., only read ints from multiples of 4

– Don’t need to build wiring to access 4-byte chunks
at any arbitrary location in hardware

• Inefficient to load/store single value across
alignment boundary (1 vs. 2 loads)

• Simplify OS:

– Prevents data from spanning virtual pages

– Atomicity issues with load/store across boundary

Structs

• Laid out contiguously by field
– In order of field declaration.

– May require some padding, for alignment.

struct student{

int age;

float gpa;

int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs

struct student{

char name[11];

short age;

int id;

};

How much space do we need to store
one of these structures?

struct student{

char name[11];

short age;

int id;

};

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

Structs

struct student{

char name[11];

short age;

int id;

};

• Size of data: 17 bytes

• Size of struct: 20 bytes

Memory …

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating
structs with malloc()!

Alternative Layout

struct student{

int id;

short age;

char name[11];

};

Same fields, declared in
a different order.

Alternative Layout

struct student{

int id;

short age;

char name[11];

};

• Size of data: 17 bytes

• Size of struct: 17 bytes!

Memory …

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a
day-to-day basis. Don’t go out and
rearrange all your struct declarations.

Cool, so we can get rid of this padding
by being smart about declarations?

A. Yes (why?)

B. No (why not?)

Cool, so we can get rid of this padding
by being smart about declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the
struct can’t be eliminated.
struct T1 { struct T2 {

char c1; int x;

char c2; char c1;

int x; char c2;

}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x

“External” Padding

• Array of Structs

Field values in each bucket must be properly aligned:

struct T2 arr[3];

Buckets must be on a 4-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 12

A note on struct syntax…

struct student {

int id;

short age;

char name[11];

};

struct student s;

s.id = 406432;

s.age = 20;

strcpy(s.name, “Alice”);

A note on struct syntax…

struct student {

int id;

short age;

char name[11];

};

struct student *s = malloc(sizeof(struct student));

(*s).id = 406432;

(*s).age = 20;

strcpy((*s).name, “Alice”);

s->id = 406432;

s->age = 20;

strcpy(s->name, “Alice”);

Not a struct, but a
pointer to a struct!

This works, but is very ugly.

Access the struct field from a pointer with ->
Does a dereference and gets the field.

Stack Padding

• Memory alignment applies elsewhere too.

int x; vs. double y;

char ch[5]; int x;

short s; short s;

double y; char ch[5];

Unions

• Declared like a struct, but only contains one
field, rather than all of them.

• Struct: field 1 and field 2 and field 3 …

• Union: field 1 or field 2 or field 3 …

• Intuition: you know you only need to store
one of N things, don’t waste space.

Unions
struct my_struct {

char ch[2];

int i;

short s;

}

union my_union {

char ch[2];

int i;

short s;

}

ch

padding

i

s

my_struct in memory

Same
memory
used for all
fields!

my_union in memory

Unions
my_union u;

u.i = 7;

union my_union {

char ch[2];

int i;

short s;

}

7
7
7
7

Same
memory
used for all
fields!

my_union in memory

Unions
my_union u;

u.i = 7;

u.s = 2;

union my_union {

char ch[2];

int i;

short s;

}

2
2
7
7

Same
memory
used for all
fields!

my_union in memory

Unions
my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

union my_union {

char ch[2];

int i;

short s;

}

a
2
7
7

Same
memory
used for all
fields!

my_union in memory

Unions
union my_union {

char ch[2];

int i;

short s;

}

5
5
5
5

Same
memory
used for all
fields!

my_union in memory

my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

u.i = 5;

Unions
union my_union {

char ch[2];

int i;

short s;

}

5
5
5
5

Same
memory
used for all
fields!

my_union in memory

• You probably won’t use
these often.

• Use when you need
mutually exclusive types.

• Can save memory.

Strings

• Strings are character arrays

• Layout is the same as:

– char name[10];

• Often accessed as (char *)

name[0]

name[1]

name[2]

name[3]

name[4]

name[5]

name[6]

name[7]

name[8]

name[9]

String Functions

• C library has many built-in functions that
operate on char *’s:

– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];

strcpy(name, “CS 31”);

name[0]

name[1]

name[2]

name[3]

name[4]

name[5]

name[6]

name[7]

name[8]

name[9]

String Functions

• C library has many built-in functions that
operate on char *’s:

– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];

strcpy(name, “CS 31”);

• Null terminator (\0) ends string.

– We don’t know/care what comes after

C name[0]

S name[1]

name[2]

3 name[3]

1 name[4]

\0 name[5]

? name[6]

? name[7]

? name[8]

? name[9]

String Functions

• C library has many built-in functions that operate
on char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

• Seems simple on the surface.
– That null terminator is tricky, strings error-prone.

– Strings used everywhere!

• You will implement these functions in a future lab.

