
CS 31: Intro to Systems
Functions and the Stack

Kevin Webb

Swarthmore College

October 9, 2018

Overview

• Stack data structure, applied to memory

• Behavior of function calls

• Storage of function data, at IA32 level

“A” Stack

• A stack is a basic data structure

– Last in, first out behavior (LIFO)

– Two operations

• Push (add item to top of stack)

• Pop (remove item from top of stack)

Oldest data

Newest data

Push (add data item)

Pop (remove and return item)

“The” Stack

• Apply stack data structure to memory

– Store local (automatic) variables

– Maintain state for functions (e.g., where to return)

• Organized into units called frames

– One frame represents all of the information for
one function.

– Sometimes called activation records

Memory Model

• Starts at the highest memory
addresses, grows into lower
addresses.

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Stack Frames

• As functions get called,
new frames added to stack.

• Example: Lab 4

– main calls get_values()

– get_values calls read_float()

– read_float calls I/O library

main

0xFFFFFFFF

get_values

read_float

(I/O library)

Stack Frames

• As functions return,
frames removed from stack.

• Example: Lab 4

– I/O library returns to read_float

– read_float returns to get_values

– get_values returns to main

main

0xFFFFFFFF

get_values

read_float

(I/O library)

All of this stack growing/shrinking happens automatically
(from the programmer’s perspective).

What is responsible for creating and
removing stack frames?

A. The user

B. The compiler

C. C library code

D. The operating system

E. Something / someone else

Insight: EVERY function needs a stack
frame. Creating / destroying a stack
frame is a (mostly) generic procedure.

Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know / access?

• Current / previous stack frame location
• Function arguments
• Return address
• Return value

• Saved registers
• Spilled temporaries main

0xFFFFFFFF

get_values

read_float

Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know / access?

• Local variables
• Current / previous stack frame location
• Function arguments
• Return address
• Return value

• Saved registers
• Spilled temporaries main

0xFFFFFFFF

get_values

read_float

Local Variables

If the programmer says:
int x = 0;

Where should x be stored?
(Recall basic stack data structure)

Which memory address is that?

main

0xFFFFFFFF

function 1

function 2

X goes here

0x????????

How should we determine the address
to use for storing a new local variable?

A. The programmer specifies the variable location.

B. The CPU stores the location of the current stack frame.

C. The operating system keeps track of the top of the stack.

D. The compiler knows / determines where the local data for
each function will be as it generates code.

E. The address is determined some other way.

Program Characteristics

• Compile time (static)

– Information that is known by analyzing your program

– Independent of the machine and inputs

• Run time (dynamic)

– Information that isn’t known until program is running

– Depends on machine characteristics and user input

The Compiler Can…

• Perform type checking.

• Determine how much space you need on the
stack to store local variables.

• Insert IA32 instructions for you to set up the
stack for function calls.
– Create stack frames on function call

– Restore stack to previous state on function return

Local Variables

• Compiler can allocate N bytes on the stack by
subtracting N from the “stack pointer”: %esp

Current Stack
Frame

Current Stack
Frame

esp

esp - N

N bytes

New variable

The Compiler Can’t…

• Predict user input.

int main() {

int decision = [read user input];

if (x > 5) {

funcA(x);

} else {

funcB();

}

}

main

0xFFFFFFFF

?

The Compiler Can’t…

• Predict user input.

int main() {

int decision = [read user input];

if (x > 5) {

funcA(x);

} else {

funcB();

}

}

main

0xFFFFFFFF

funcB

main

0xFFFFFFFF

funcA OR

The Compiler Can’t…

• Predict user input.

• Can’t assume a function will always be at a
certain address on the stack.

main

0xFFFFFFFF

funcB

main

0xFFFFFFFF

funcA OR
Alternative: create stack
frames relative to the current
(dynamic) state of the stack.

Stack Frame Location

• Where in memory is the current stack frame?

main

0xFFFFFFFF

function 1

function 2

Current top of stack

Current bottom of stack

Recall: IA32 Registers

• Information about
currently executing
program

%eip

General purpose
registers

Current stack top

Current stack frame

Instruction pointer (PC)

CF ZF SF OF Condition codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Stack Frame Location

• Where in memory is the current stack frame?

• Maintain invariant:
– The current function’s

stack frame is always
between the addresses
stored in %esp and %ebp

• %esp: stack pointer

• %ebp: frame pointer (base pointer) main

0xFFFFFFFF

function 1

function 2

%esp

%ebp

Stack Frame Location

• Compiler ensures that this invariant holds.

– We’ll see how a bit later.

• This is why all local
variables we’ve seen
in IA32 are relative
to %ebp or %esp!

main

0xFFFFFFFF

function 1

function 2

%esp

%ebp

How would we implement pushing x to
the top of the stack in IA32?
A. Increment %esp

Store x at (%esp)

B. Store x at (%esp)
Increment %esp

C. Decrement %esp
Store x at (%esp)

D. Store x at (%esp)
Decrement %esp

E. Copy %esp to %ebp
Store x at (%ebp)

main

0xFFFFFFFF

function 1

function 2

X goes here
%esp

(Top of stack)

%ebp
(Frame start)

Push & Pop

• IA32 provides convenient instructions:
– pushl src

• Move stack pointer up by 4 bytes subl $4, %esp

• Copy ‘src’ to current top of stack movl src, (%esp)

– popl dst

• Copy current top of stack to ‘dst’ movl (%esp), dst

• Move stack pointer down 4 bytes addl $4, %esp

• src and dst are the contents of any register

Local Variables

• More generally, we can make space on the
stack for N bytes by subtracting N from %esp

Current Stack
Frame

Current Stack
Frame

esp esp - N
N bytes

New variable

Local Variables

• More generally, we can make space on the
stack for N bytes by subtracting N from %esp

• When we’re done, free the space by adding N
back to %esp

Current Stack
Frame

Current Stack
Frame

esp

esp - N

N bytes

New variable

Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries main

0xFFFFFFFF

function 1

function 2

Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries main

0xFFFFFFFF

function 1

function 2

Stack Frame Relationships

• If function 1 calls function 2:

– function 1 is the caller

– function 2 is the callee

• With respect to main:

– main is the caller

– function 1 is the callee

main

0xFFFFFFFF

function 1
(caller)

function 2
(callee)

Where should we store all this stuff?

A. In registers

B. On the heap

C. In the caller’s stack frame

D. In the callee’s stack frame

E. Somewhere else

Previous stack frame base address
Function arguments
Return value
Return address

Calling Convention

• You could store this stuff wherever you want!

– The hardware does NOT care.

– What matters: everyone agrees on where to find
the necessary data.

• Calling convention: agreed upon system for
exchanging data between caller and callee

IA32 Calling Convention (gcc)

• In register %eax:
– The return value

• In the callee’s stack frame:
– The caller’s %ebp value (previous frame pointer)

• In the caller’s frame (shared with callee):
– Function arguments

– Return address (saved PC value)

IA32 Calling Convention (gcc)

• In register %eax:
– The return value

• In the callee’s stack frame:
– The caller’s %ebp value (previous frame pointer)

• In the caller’s frame (shared with callee):
– Function arguments

– Return address (saved PC value)

Return Value

• If the callee function produces a result, the
caller can find it in %eax

• We saw this when we wrote our while loop:

– Copy the result to %eax before we finished up

IA32 Calling Convention (gcc)

• In register %eax:
– The return value

• In the callee’s stack frame:
– The caller’s %ebp value (previous frame pointer)

• In the caller’s frame (shared with callee):
– Function arguments

– Return address (saved PC value)

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• Must adjust %esp, %ebp on call / return.

caller

%esp

%ebp …

callee

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• Immediately upon calling a function:

1. pushl %ebp

caller

%esp

…%ebp

caller’s %ebp value

callee

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• Immediately upon calling a function:

1. pushl %ebp

2. Set %ebp = %esp

caller

%esp

…%ebp

caller’s %ebp value

callee

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• Immediately upon calling a function:

1. pushl %ebp

2. Set %ebp = %esp

3. Subtract N from %esp
caller

%esp

…%ebp

caller’s %ebp value

Callee can now execute.

callee

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• To return, reverse this:

caller

%esp

…%ebp

caller’s %ebp value

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• To return, reverse this:

1. set %esp = %ebp

caller

%esp

…%ebp

caller’s %ebp value

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• To return, reverse this:

1. set %esp = %ebp

2. popl %ebp

caller

%esp

…%ebp

caller’s %ebp value

Frame Pointer

• Must maintain invariant:

– The current function’s stack frame is always
between the addresses stored in %esp and %ebp

• To return, reverse this:

1. set %esp = %ebp

2. popl %ebp

caller

%esp

…%ebpBack to where we started.

IA32 has another convenience
instruction for this: leave

Recall: Assembly While Loop

sum_function:

pushl %ebp

movl %esp, %ebp

Your code here

movl $10, %eax

leave

ret

Set up the stack frame
for this function.

Store return value in %eax.

Restore caller’s %esp, %ebp.

Recap

• The stack memory region keeps state for the
sequence of function calls we’ve made

• The state for one function is a stack frame

• If function A calls function B:

– function A is the caller

– function B is the callee

Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries main

0xFFFFFFFF

function 1

function 2

Dynamic Stack Accounting

• Dedicate CPU registers for stack bookkeeping

– %esp (stack pointer): Top of current stack frame

– %ebp (frame pointer): Base of current stack frame

• Compiler maintains these pointers by inserting
instructions on function call/return.

– It doesn’t know (or care about) the exact
addresses they point to.

current stack
frame

%esp

%ebp …

Calling Convention

• Agreed upon method for exchanging data
between caller and callee.

IA32 Calling Convention (gcc)

• In register %eax:
– The return value

• In the callee’s stack frame:
– The caller’s %ebp value (previous frame pointer)

• In the caller’s frame (shared with callee):
– Function arguments

– Return address (saved PC value)

callee

caller

%esp

…%ebp

caller’s %ebp value

pushl %ebp (store caller’s frame pointer)

Frame Pointer: Function Call

caller

%esp

…%ebp

Initial state

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %esp, %ebp
(establish callee’s frame pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

subl $SIZE, %esp
(allocate space for callee’s locals)

caller

%esp

…%ebp

popl %ebp (restore caller’s frame pointer)

Frame Pointer: Function Return

callee

caller

%esp

…%ebp

caller’s %ebp value

movl %ebp, %esp
(restore caller’s stack pointer)

callee

caller

%esp

…%ebp

caller’s %ebp value

Want to restore caller’s frame.

IA32 provides a convenience
instruction that does all of this:
leave

Lab 4: swap.s

swap:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

Your code here

leave

ret

IA32 Calling Convention (gcc)

• In register %eax:
– The return value

• In the callee’s stack frame:
– The caller’s %ebp value (previous frame pointer)

• In the caller’s frame (shared with callee):
– Function arguments

– Return address (saved PC value)

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

funcA:

…

call funcB

…

funcB:

pushl %ebp

movl %esp, %ebp

…

Function A

Function B

…

Program Counter

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Text Memory Region
Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

addl $5, %ecx

Program Counter

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Text Memory Region
Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

addl $5, %ecx

Update PC to next instruction.

Execute the addl.

Program Counter

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

movl $ecx, -4(%ebp)

Text Memory Region

Program Counter

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

movl $ecx, -4(%ebp)

Update PC to next instruction.

Execute the movl.

Text Memory Region

Program Counter

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Keep executing in a straight line
downwards like this until:

We hit a jump instruction.
We call a function.

Text Memory Region

Changing the PC: Jump

• On a jump:

– Check condition codes

– Set PC to execute elsewhere (not next instruction)

• Do we ever need to go back to the instruction
after the jump?

Maybe (and if so, we’d have a label to jump back to), but usually not.

Changing the PC: Functions

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

What we’d like this to do:

Text Memory Region

Changing the PC: Functions

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

What we’d like this to do:

Set up function B’s stack.

Text Memory Region

Changing the PC: Functions

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce
result (stored in %eax).

Text Memory Region

Changing the PC: Functions

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce
result (stored in %eax).

Restore function A’s stack.

Text Memory Region

Changing the PC: Functions

Program
Counter (PC)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

What we’d like this to do:

Return:
Go back to what we were doing
before funcB started.

Unlike jumping, we intend to go back!

Text Memory Region

Like push, pop, and leave, call and ret
are convenience instructions.
What should they do to support the PC-
changing behavior we need? (The PC is %eip.)

call

In words:

In instructions:

ret

In words:

In instructions:

Functions and the Stack

Program
Counter (%eip)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Function A

…

Stack Memory Region

Text Memory RegionExecuting instruction:
call funcB

PC points to next instruction

Functions and the Stack

Program
Counter (%eip)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. pushl %eip

Functions and the Stack

Program
Counter (%eip)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)

Function B

Functions and the Stack

Program
Counter (%eip)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip

Functions and the Stack

Program
Counter (%eip)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Function A

…

Stack Memory Region

Text Memory Region

6. (resume funcA)

Functions and the Stack

Program
Counter (%eip)

funcA:

addl $5, %ecx

movl %ecx, -4(%ebp)

…

call funcB

addl %eax, %ecx

…

funcB:

pushl %ebp

movl %esp, %ebp

…

movl $10, %eax

leave

ret

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)

Functions and the Stack

Program
Counter (%eip)

Function A

…

Stack Memory Region

Stored PC in funcA

1. pushl %eip
2. jump funcB
3. (execute funcB)
4. restore stack
5. popl %eip
6. (resume funcA)

call

leave

ret

Return address:

Address of the instruction we should
jump back to when we finish (return
from) the currently executing function.

IA32 Stack / Function Call Instructions

pushl
Create space on the stack and place
the source there.

subl $4, %esp

movl src, (%esp)

popl
Remove the top item off the stack and
store it at the destination.

movl (%esp), dst

addl $4, %esp

call
1. Push return address on stack
2. Jump to start of function

push %eip

jmp target

leave
Prepare the stack for return
(restoring caller’s stack frame)

movl %ebp, %esp

popl %ebp

ret

Return to the caller, PC  saved PC
(pop return address off the stack into
PC (eip))

popl %eip

IA32 Calling Convention (gcc)

• In register %eax:
– The return value

• In the callee’s stack frame:
– The caller’s %ebp value (previous frame pointer)

• In the caller’s frame (shared with callee):
– Function arguments

– Return address (saved PC value)

We know we’re going to place
arguments on the stack, in the caller’s
frame. Should they go above or below
the return address?

A. Above

B. Below

C. Somewhere else
Caller

…

Return Address

Callee

Above

Below

IA32 Stack / Function Call Instructions

pushl
Create space on the stack and place
the source there.

subl $4, %esp

movl src, (%esp)

popl
Remove the top item off the stack and
store it at the destination.

movl (%esp), dst

addl $4, %esp

call
1. Push return address on stack
2. Jump to start of function

push %eip

jmp target

leave
Prepare the stack for return
(restoring caller’s stack frame)

movl %ebp, %esp

popl %ebp

ret

Return to the caller, PC  saved PC
(pop return address off the stack into
PC (eip))

popl %eip

Arguments

• Arguments to the callee are stored just
underneath the return address.

• Does it matter what order
we store the arguments in?

• Not really, as long as
we’re consistent
(follow conventions).

Caller

…

Return Address

Callee

Callee Arguments

esp

ebp

This is why arguments can be
found at positive offsets relative
to %ebp.

Putting it all together…

…
Older stack frames.

…

Caller’s local variables.

Final Argument to Callee

…

First Argument to Callee

Return Address

Callee’s local variables.

Caller’s Frame Pointer

Caller’s
frame.

Callee’s
frame.

Shared by caller
and callee.

How would we translate this to IA32?
What should be on the stack?
int func(int a, int b, int c) {

return b+c;

}

int main() {

func(1, 2, 3);

}

Assume the stack initially looks like:

main

0xFFFFFFFF

%esp

%ebp

How would we translate this to IA32?
What should be on the stack?

main: func: Stack

Stack Frame Contents

• What needs to be stored in a stack frame?
– Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries main

0xFFFFFFFF

function 1

function 2

Saving Registers

• Registers are a scarce resource, but they’re fast to
access. Memory is plentiful, but slower to access.

• Should the caller save its registers to free them up for
the callee to use?

• Should the callee save the registers in case the caller
was using them?

• Who needs more registers for temporary calculations,
the caller or callee?

• Clearly the answers depend on what the functions do…

Splitting the difference…

• We can’t know the answers to those questions
in advance…

• We have six general-purpose registers, let’s
divide them into two groups:

– Caller-saved: %eax, %ecx, %edx

– Callee-saved: %ebx, %esi, %edi

Register Convention

• Caller-saved: %eax, %ecx, %edx

– If the caller wants to preserve these registers, it must
save them prior to calling callee

– callee free to trash these, caller will restore if needed

• Callee-saved: %ebx, %esi, %edi

– If the callee wants to use these registers, it must save
them first, and restore them before returning

– caller can assume these will be preserved

This is why I’ve told you to
only use these three registers.

Running Out of Registers

• Some computations require more than six
registers to store temporary values.

• Register spilling: The compiler will move some
temporary values to memory, if necessary.

– Values pushed onto stack, popped off later

– No explicit variable declared by user

Midterm Checkpoint

• The midterm will cover material up to here!

