
CS 31: Intro to Systems
Binary Arithmetic

Kevin Webb

Swarthmore College

September 11, 2018

Reading Quiz

Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)
Addition

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

• Addition works like grade school addition:

1

0110 6 1100 12

+ 0100 + 4 + 1010 +10

1010 10 1 0110 6

^carry out

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

• Addition works like grade school addition:

1

0110 6 1100 12

+ 0100 + 4 + 1010 +10

1010 10 1 0110 6

^carry out

Four bits give us range: 0 - 15 Overflow!

Suppose we want to support signed values
too (positive and negative). Where should
we put -1 and -127 on the circle? Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A B

C: Put them somewhere else.

Signed Magnitude

• One bit (usually left-most) signals:

• 0 for positive

• 1 for negative

For one byte:

1 = 00000001, -1 = 10000001

Pros: Negation is very simple!

0

-1

-127

A

1

Signed Magnitude

• One bit (usually left-most) signals:

• 0 for positive

• 1 for negative

For one byte:

0 = 00000000

What about 10000000?

Major con: Two ways to represent zero.

0

-1

-127 1

A

-0

Two’s Complement (signed)

• Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

Two’s Complement

• Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

0

-127

-1

B

1

127

-128

Two’s Complement

• Only one value for zero

• With N bits, can represent the range:

• -2N-1 to 2N-1 – 1

• First bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:

1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers
are stored using two’s complement! This is the standard!

Two’s Compliment

• Each two’s compliment number is now:

[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the first digit. This is why first digit
tells us negative vs. positive.

If we interpret 11001 as a two’s
complement number, what is the value
in decimal?

• Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25

“If we interpret…”

• What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12 (%u)

• …as signed (two’s comp), 4-bit value: -4 (%d)

• …as an 8-bit value: 12

(i.e., 00001100)

Two’s Complement Negation

• To negate a value x, we want to find y such
that x + y = 0.

• For N bits, y = 2N - x

0

-127

-1

B

1

127

-128

Negation Example (8 bits)

• For N bits, y = 2N - x

• Negate 00000010 (2)

• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!

• Put -2 where 254 would be
if wheel was unsigned.

• 254 in binary is 11111110

0

-127

-1

B

1

127

-128Given 11111110, it’s 254 if interpreted as
unsigned and -2 interpreted as signed.

Negation Shortcut

• A much easier, faster way to negate:

• Flip the bits (0’s become 1’s, 1’s become 0’s)

• Add 1

• Negate 00101110 (46)

• 28 - 46 = 256 - 46 = 210

• 210 in binary is 11010010

Addition & Subtraction

• Addition is the same as for unsigned
• One exception: different rules for overflow

• Can use the same hardware for both

• Subtraction is the same operation as addition
• Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
• ~7 is shorthand for “flip the bits of 7”

Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

By switching to two’s complement,
have we solved this value “rolling over”
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128This is an issue we need to be aware of
when adding and subtracting!

Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone

If we add a positive number and a
negative number, will we have
overflow? (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone

Signed Overflow

• Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

• Not enough bits to store result!

Signed addition (and subtraction):

2+-1=1 2+-2=0 2+-4=-2 2+7=-7 -2+-7=7

0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110 1001 1 0111

0

-127

-1

Signed

1

127

-128
No chance of overflow here - signs
of operands are different!

Signed Overflow

• Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

• Not enough bits to store result!

Signed addition (and subtraction):

2+-1=1 2+-2=0 2+-4=-2 2+7=-7 -2+-7=7

0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110 1001 1 0111

Overflow here! Operand signs are the
same, and they don’t match output sign!

Overflow Rules

• Signed:

• The sign bits of operands are the same, but the
sign bit of result is different.

• Can we formalize unsigned overflow?

• Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Let’s call this +1 input: “Carry in”

How many of these unsigned
operations have overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0)

9 + 11 = 1001 + 1011 + 0 = 1 0100

9 + 6 = 1001 + 0110 + 0 = 0 1111

3 + 6 = 0011 + 0110 + 0 = 0 1001

Subtraction (carry-in = 1)

6 - 3 = 0110 + 1100 + 1 = 1 0011

3 - 6 = 0011 + 1010 + 1 = 0 1101

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)

How many of these unsigned
operations have overflowed?
Interpret these as 4-bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0)

9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4

9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15

3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)

6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3

3 - 6 = 0011 + 1010 + 1 = 0 1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

Pattern?

(-3)

(-6)

Overflow Rule Summary

• Signed overflow:
• The sign bits of operands are the same, but the sign

bit of result is different.

• Unsigned: overflow
• The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0 0 0

0 1 1

1 0 1

1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Suppose I have an 8-bit value,
00010110 (22), and I want to add it to a
signed four-bit value, 1011 (-5). How
should we represent the four-bit value?

A. 1101 (don’t change it)

B. 00001101 (pad the beginning with 0’s)

C. 11111011 (pad the beginning with 1’s)

D. Represent it some other way.

Sign Extension
• When combining signed values of different sizes,

expand the smaller to equivalent larger size:

char y=2, x=-13;

short z = 10;

z = z + y; z = z + x;

0000000000001010 0000000000000101

+ 00000010 + 11110011

0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get
same numeric value in larger number of bytes.

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the
same value?

0111 ---> 0000 0111 obviously still 7

1010 ----> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

• For these, doesn’t matter how the bits are
interpreted (signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting

Bit-wise Operators
• bit operands, bit result (interpret as you please)

& (AND) | (OR) ~(NOT) ^(XOR)

A B A & B A | B ~A A ^ B

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

01010101 01101010 10101010 ~10101111

| 00100001 & 10111011 ^ 01101001 01010000

01110101 00101010 11000011

More Operations on Bits
• Bit-shift operators: << left shift, >> right shift

01010101 << 2 is 01010100

2 high-order bits shifted out

2 low-order bits filled with 0

01101010 << 4 is 10100000

01010101 >> 2 is 00010101

01101010 >> 4 is 00000110

10101100 >> 2 is 00101011 (logical shift)

or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type:

signed: arithmetic, unsigned: logical

Up Next

• C programming

