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Reading Quiz



Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition
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Unsigned Integers

• Suppose we had one byte
• Can represent 28 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128 
(10000000)

64192

255 (11111111)
Addition

Modular arithmetic: Here, all values are modulo 256.



Unsigned Addition (4-bit)

• Addition works like grade school addition:

1

0110    6       1100    12

+ 0100 + 4 + 1010 +10

1010   10     1 0110     6

^carry out

Four bits give us range: 0 - 15



Unsigned Addition (4-bit)

• Addition works like grade school addition:

1

0110    6       1100    12

+ 0100 + 4 + 1010 +10

1010   10     1 0110     6

^carry out

Four bits give us range: 0 - 15 Overflow!



Suppose we want to support signed values 
too (positive and negative). Where should 
we put -1 and -127 on the circle?  Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A B

C: Put them somewhere else.



Signed Magnitude

• One bit (usually left-most) signals:

• 0 for positive

• 1 for negative

For one byte:

1 = 00000001, -1 = 10000001

Pros: Negation is very simple!

0

-1

-127

A

1



Signed Magnitude

• One bit (usually left-most) signals:

• 0 for positive

• 1 for negative

For one byte:

0 = 00000000

What about 10000000?

Major con: Two ways to represent zero.

0

-1

-127 1

A

-0



Two’s Complement (signed)

• Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.



Two’s Complement

• Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

0

-127

-1

B

1

127

-128



Two’s Complement

• Only one value for zero

• With N bits, can represent the range:

• -2N-1 to 2N-1 – 1

• First bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:

1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers 
are stored using two’s complement!  This is the standard!



Two’s Compliment

• Each two’s compliment number is now:

[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the first digit.  This is why first digit 
tells us negative vs. positive.



If we interpret 11001 as a two’s 
complement number, what is the value 
in decimal?

• Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25



“If we interpret…”

• What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12  (%u)

• …as signed (two’s comp), 4-bit value: -4  (%d)

• …as an 8-bit value: 12

(i.e., 00001100)



Two’s Complement Negation

• To negate a value x, we want to find y such 
that x + y = 0.

• For N bits, y = 2N - x

0

-127

-1

B

1

127

-128



Negation Example (8 bits)

• For N bits, y = 2N - x

• Negate 00000010 (2)

• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!

• Put -2 where 254 would be
if wheel was unsigned.

• 254 in binary is 11111110

0

-127

-1

B

1

127

-128Given 11111110, it’s 254 if interpreted as 
unsigned and -2 interpreted as signed.



Negation Shortcut

• A much easier, faster way to negate:

• Flip the bits (0’s become 1’s, 1’s become 0’s)

• Add 1

• Negate 00101110 (46)

• 28 - 46 = 256 - 46 = 210

• 210 in binary is 11010010



Addition & Subtraction

• Addition is the same as for unsigned
• One exception: different rules for overflow

• Can use the same hardware for both

• Subtraction is the same operation as addition
• Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
• ~7 is shorthand for “flip the bits of 7”



Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->



By switching to two’s complement, 
have we solved this value “rolling over” 
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128This is an issue we need to be aware of 
when adding and subtracting!



Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone



If we add a positive number and a 
negative number, will we have 
overflow?  (Assume they are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone



Signed Overflow

• Overflow: IFF the sign bits of operands are the same, 
but the sign bit of result is different.

• Not enough bits to store result!

Signed addition (and subtraction):

2+-1=1 2+-2=0 2+-4=-2   2+7=-7   -2+-7=7

0010     0010     0010      0010     1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110      1001   1 0111

0

-127

-1

Signed

1

127

-128
No chance of overflow here - signs 
of operands are different!



Signed Overflow

• Overflow: IFF the sign bits of operands are the same, 
but the sign bit of result is different.

• Not enough bits to store result!

Signed addition (and subtraction):

2+-1=1 2+-2=0 2+-4=-2   2+7=-7   -2+-7=7

0010     0010     0010      0010     1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110      1001   1 0111

Overflow here!  Operand signs are the 
same, and they don’t match output sign!



Overflow Rules

• Signed:

• The sign bits of operands are the same, but the 
sign bit of result is different.

• Can we formalize unsigned overflow?

• Need to include subtraction too, skipped it before.



Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Let’s call this +1 input: “Carry in”



How many of these unsigned
operations have overflowed?
4 bit unsigned values (range 0 to 15):

carry-in    carry-out

Addition (carry-in = 0)

9 + 11  =   1001 + 1011 + 0 =  1  0100

9 +  6  =   1001 + 0110 + 0 =  0  1111

3 +  6  =   0011 + 0110 + 0 =  0  1001

Subtraction (carry-in = 1)

6 - 3  =   0110 + 1100 + 1  = 1  0011

3 - 6  =   0011 + 1010 + 1  = 0  1101

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)



How many of these unsigned
operations have overflowed?
Interpret these as 4-bit unsigned values (range 0 to 15):

carry-in    carry-out

Addition (carry-in = 0)

9 + 11  =   1001 + 1011 + 0 =  1  0100 =  4

9 +  6  =   1001 + 0110 + 0 =  0  1111 = 15

3 +  6  =   0011 + 0110 + 0 =  0  1001 =  9

Subtraction (carry-in = 1)

6 - 3  =   0110 + 1100 + 1  = 1  0011 =  3

3 - 6  =   0011 + 1010 + 1  = 0  1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

Pattern?

(-3)

(-6)



Overflow Rule Summary

• Signed overflow:
• The sign bits of operands are the same, but the sign 

bit of result is different.

• Unsigned: overflow
• The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0   0            0

0   1            1

1   0            1

1   1            0

So far, all arithmetic on values that were the same size.  What if they’re different?



Suppose I have an 8-bit value, 
00010110 (22), and I want to add it to a 
signed four-bit value, 1011 (-5).  How 
should we represent the four-bit value?

A. 1101 (don’t change it)

B. 00001101 (pad the beginning with 0’s)

C. 11111011 (pad the beginning with 1’s)

D. Represent it some other way.



Sign Extension
• When combining signed values of different sizes, 

expand the smaller to equivalent larger size:

char y=2, x=-13; 

short z = 10;

z = z + y;                z = z + x;

0000000000001010          0000000000000101

+ 00000010          +       11110011

0000000000000010          1111111111110011

Fill in high-order bits with sign-bit value to get 
same numeric value in larger number of bytes.



Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the 
same value?

0111   --->  0000 0111     obviously still 7

1010   ----> 1111 1010     is this still -6?

-128 + 64 + 32  + 16 +  8 + 0 + 2 + 0 =  -6    yes!



Operations on Bits

• For these, doesn’t matter how the bits are 
interpreted (signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting



Bit-wise Operators
• bit operands, bit result (interpret as you please)

& (AND)          | (OR)           ~(NOT)            ^(XOR)

A    B      A & B    A | B   ~A    A ^ B

0    0        0        0       1      0

0    1        0        1       1      1

1    0        0        1       0      1

1    1        1        1       0      0

01010101     01101010     10101010   ~10101111

| 00100001 & 10111011 ^ 01101001 01010000

01110101     00101010     11000011



More Operations on Bits
• Bit-shift operators:   << left shift,  >> right shift

01010101 << 2  is 01010100     

2 high-order bits shifted out

2 low-order bits filled with 0

01101010 << 4  is 10100000 

01010101 >> 2  is 00010101

01101010 >> 4  is 00000110

10101100 >> 2  is 00101011 (logical shift) 

or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type:

signed: arithmetic, unsigned: logical



Up Next

• C programming


