[Linked Structures

*Self-referential classes can be used to create linked data structures:

class Node:
def int (self, data, next):
self.data = data
self .next = next
def getNext (self):
return self.next
def getData (self):

return self.next

* next holds a reference to a Node object

* through the next reference, can link Node objects together:
Node object Node object Node object

data 66

next /

CS21, Tia Newhall

Linked List

* Ordered Collection of data
* Need a single variable which 1s reference to 15 node on list

* Nodes are linked together in-order by following next references

an empty list: List of length 1:

head = None
a list with one node: head | =/ | data 25
head = Node (25, None)

next —
add a second Node to the end:
head.setNext (Node (99, None)) .
List of length 2:
data 99

next o

CS21, Tia Newhall

Operations on a List

* All start at Node referred to by head
reference, and traverse next references to
access other nodes 1n the list

* Accessing the 1th node 1s O(n):

— first access Node referred to by head,
follow its next reference to access the 2™ Node,
follow 1ts next reference to access the 3 Node,
and so on

CS21, Tia Newhall

Insert at Head of List

head = None

For i in range(10): // make list of 10 Nodes
val = input(“Enter a value: V)
tmp = Node(val, None)
tmp . setNext (head)

head = tmp
tmp ~
[T —~—~—/[data | 25
_0- head nm 1
1l == 0. ~
~— — next —
tmp o
data 25
data 63
— / next |

S head /\yi// |

CS21, Tia Newhall

Resulting List of 10 nodes:

head
/ |
data 23 data 44 data 35 data 77 data 88
next next next / next / next)
data 55 data 63 data 25
next next next —

CS21, Tia Newhall

Traverse the List

tmp = head # start at the 1s* node

while (tmp !'= None) :
print out value of the data field of curr node
print (tmp.getData() + “ %)
set tmp to point to the next Node in the list
tmp = tmp.getNext ()

output: 23 44 35 77 88 683 21 55 63 25

tm
head |, /}%L\A

data 23 data 44 data 35 data 77 data 88
next > next ¥ g next ¥ next > next

N

data 683 data 21 data 55 data 63 data 25
next ¥4 next - next - next - next -

CS21, Tia Newhall

Find Element In List

* Start at head Node, compare search value to data field
* traverse next refs until matching data field 1s found, or until
no more list

found will pt to matching Node
found = None

tmp = head
stack while (tmp '= None):
val e if (tmp.getData() == wval):
found = tmp
founi. tmp = tmp.getNext ()

head tm

. data 25

next

e o o next —

CS21, Tia Newhall

Insert in the middle

new node = Node (20, None)
lets just make tmp point

tmp = head.getNext ()

to some Node after head

insert new node after tmp
new node.setNext (tmp.getNext())
tmp . setNext (new node)

stack

new_node

head tmp

y A

data

next

data 23

data

44

next ~

next

data

35

next

data

25

next

CS21, Tia Newhall

[.inkedList Class

* Would really write and use a LinkedList class that encapsulates
all data and method functions associated with a linked list:

class LinkedList:

def init (self): # create an empty list
self.head = None
self.size = 0

def insertAtHead(self, data):
new node = Node(data, None)
new node.setNext (self.head)
self.head = new node
self.size = self.size + 1

and more method definitions for linked

list operations

def main(): # use the LinkedList class
my list = LinkedList()
my list.insertAtHead(25)

CS21, Tia Newhall

	Linked Structures
	Linked List
	Operations on a List
	Insert at Head of List
	Resulting List of 10 nodes:
	Traverse the List
	Find Element In List
	Insert in the middle
	LinkedList Class

