
CS21, Tia Newhall

Linked Structures
•Self-referential classes can be used to create linked data structures:

 class Node:
def __int__(self, data, next):

self.data = data
self.next = next

def getNext(self):
return self.next

def getData(self):
return self.next

• next holds a reference to a Node object
• through the next reference, can link Node objects together:

data 25

next

data 66

next

data 123

next . . .

Node object Node objectNode object

CS21, Tia Newhall

Linked List
• Ordered Collection of data
• Need a single variable which is reference to 1st node on list
• Nodes are linked together in-order by following next references

an empty list:
head = None
a list with one node:
head = Node(25, None)

data 25

next

head

add a second Node to the end:
head.setNext(Node(99, None))

data 25

next
head

data 99

next

List of length 1:

List of length 2:

Stack memory Object memory

CS21, Tia Newhall

Operations on a List

• All start at Node referred to by head
reference, and traverse next references to
access other nodes in the list

• Accessing the ith node is O(n):
– first access Node referred to by head,

follow its next reference to access the 2nd Node,
follow its next reference to access the 3rd Node,
and so on

CS21, Tia Newhall

Insert at Head of List
head = None
For i in range(10): // make list of 10 Nodes
 val = input(“Enter a value: “)
 tmp = Node(val, None)
 tmp.setNext(head)
 head = tmp

data 25

next
head

tmp

i == 0:

data 25

next
headi == 1:

tmp

data 63

next

CS21, Tia Newhall

Resulting List of 10 nodes:

head

data 44

next

data 35

next

data 77

next

data 88

next

data 23

next

data 21

next

data 55

next

data 63

next

data 25

next

data 683

next

CS21, Tia Newhall

Traverse the List
tmp = head # start at the 1st node
while(tmp != None):
 # print out value of the data field of curr node
 print (tmp.getData() + “ “)
 # set tmp to point to the next Node in the list
 tmp = tmp.getNext()
output: 23 44 35 77 88 683 21 55 63 25

tmp

. . .
head

data 44
next

data 35
next

data 77
next

data 88
next

data 23
next

data 21
next

data 55
next

data 63
next

data 25
next

data 683
next

CS21, Tia Newhall

Find Element In List

head

data 44

next

data 35

next

data 23

next

data 25

next

tmp

. . .

val

• Start at head Node, compare search value to data field
• traverse next refs until matching data field is found, or until
 no more list # found will pt to matching Node

 found = None
 tmp = head
 while(tmp != None):
 if(tmp.getData() == val):

 found = tmp
 tmp = tmp.getNext()

35
found

stack

CS21, Tia Newhall

Insert in the middle
new_node = Node(20, None)
tmp = head.getNext() # lets just make tmp point

 # to some Node after head

insert new_node after tmp
new_node.setNext(tmp.getNext())
tmp.setNext(new_node)

data 20

next

new_node

data 44

next

data 35

next

data 23

next

data 25

next. . .

head tmp

stack

CS21, Tia Newhall

LinkedList Class
• Would really write and use a LinkedList class that encapsulates
 all data and method functions associated with a linked list:

 class LinkedList:
def __init__(self): # create an empty list

self.head = None
self.size = 0

def insertAtHead(self, data):
new_node = Node(data, None)
new_node.setNext(self.head)
self.head = new_node
self.size = self.size + 1

and more method definitions for linked
list operations . . .

def main(): # use the LinkedList class
my_list = LinkedList()
my_list.insertAtHead(25)

	Linked Structures
	Linked List
	Operations on a List
	Insert at Head of List
	Resulting List of 10 nodes:
	Traverse the List
	Find Element In List
	Insert in the middle
	LinkedList Class

