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ABSTRACT 
Smartphones can capture diverse spatio-temporal data about an 
individual; including both intermittent self-report, and continuous 
passive data collection from onboard sensors and applications. The 
resulting personal data streams can support powerful inference 
about the user's state, behavior, well-being and environment. 
However making sense and acting on these multi-dimensional, 
heterogeneous data streams requires iterative and intensive 
exploration of the datasets, and development of customized 
analysis techniques that are appropriate for a particular health 
domain. 

Lifestreams is a modular and extensible open-source data analysis 
stack designed to facilitate the exploration and evaluation of 
personal data stream sense-making. Lifestreams analysis modules 
include: feature extraction from raw data; feature selection; pattern 
and trend inference; and interactive visualization. The system was 
iteratively designed during a 6-month pilot in which 44 young 
mothers used an open-source participatory mHealth platform to 
record both self-report and passive data about their diet, stress and 
exercise. Feedback as participants and the study coordinator 
attempted to use the Lifestreams dashboard to make sense of their 
data collected during this intensive study were critical inputs into 
the design process. In order to explore the generality and 
extensibility of Lifestreams pipeline, it was then applied to two 
additional studies with different datasets, including a continuous 
stream of audio data, self-report data, and mobile system analytics. 
In all three studies, Lifestreams’ integrated analysis pipeline was 
able to identify key behaviors and trends in the data that were not 
otherwise identified by participants.  

Categories and Subject Descriptors 
J.4 [Computer Applications]: Social and Behavioral Sciences – 
Psychology and Sociology. 

General Terms 
Design, Experimentation. 

Keywords 
Mobile Health, Mobile Systems, Personal Data Analysis. 

1. INTRODUCTION 
The use of personal data streams to improve health (mHealth [10, 
16, 23, 34]) incorporates a variety of methods utilizing 
smartphones, including passive collection of activity, location, and 
communication; prompted self-report (e.g., experience sampling 
[21]); and usage data from health apps (e.g., PTSD Coach, 
WellDoc [45, 46]). Such detailed data collection can be used to 
systematically monitor chronic conditions and health behaviors 
outside the clinical setting for both research and intervention.  

In the raw, these data are highly variable and difficult to interpret. 
However, researchers across many health domains are working to 
develop appropriate and customized analytics, to transform these 
multi-dimensional, heterogeneous data streams into actionable and 
robust behavioral-indicators. The hope is that such behavioral 
indicators can be used to characterize a user’s baseline, and then to 
identify significant variations, trends and shifts in specific 
behaviors or symptoms that are relevant to an individual’s behavior 
and health.  

Lifestreams is an analytical software stack that facilitates the 
iterative exploration process needed to define and evaluate specific 
behavioral indicators. The Lifestreams stack consists of four 
layers—feature extraction and aggregation, feature selection, 
inference and visualization. Each layer in Lifestreams consists of 
modular building blocks that can process the data provided by the 
lower layer, and then send the result to the next layer up. 

In this paper we demonstrate the power of Lifestreams using 
original data acquired during a 6-month, 44-person, NIH-funded 
mHealth pilot in which young mothers ran a smartphone 
application suite that captured passive mobility data and self-report 
about their diet, stress and exercise. Using Lifestreams’ data 
analysis pipeline, we present three sets of analytical results based 
on inference methods developed to explore participant’s behaviors. 
These inference methods were developed in an iterative fashion (in 
collaboration with subject matter experts) using the Lifestreams 
stack to identify significant behavioral patterns in specific 
participants. The accuracy and utility of the analytical building 
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blocks were qualitatively verified through interviews with the 
participants; Lifestreams visualization was used to guide some of 
these discussions. 

In summary, the key contributions of this paper are: 

• Lifestreams, a 4-tiered software stack and extensible set of 
analytical building blocks that facilitates the exploration of 
diverse personal data streams to extract important behavioral 
indicators (Section 2). 

• Demonstration of Lifestreams’ ability to analyze multiple 
heterogeneous data streams to highlight significant 
correlations and changes over time even across multiple 
simultaneous behaviors during a real-world 6-month study 
with 44 young mothers; and includes a qualitative study based 
on interviews with 8 out of 44 moms who were able to make 
use of the Lifestreams visualization component guided by a 
research coordinator trained in the system (Section 3). 

• In order to explore the generality and extensibility of the 
Lifestreams, we applied it in two additional contexts, one with 
continuous audio and another of larger scale (Section 4). 

2. Lifestreams: A Modular mHealth Data 
Analysis Stack 
Lifestreams is an open-source data analysis stack designed to run 
on top of an existing mobile data collection system 1 . The 
Lifestreams stack consists of four layers—feature extraction and 
aggregation, feature selection, inference and visualization. Each 
layer consists of modular plugins or building blocks that can 
process the data provided by the lower layer, and then send the 
result to the next layer up in the stack. Figure 1 shows a diagram of 
the Lifestreams analysis software stack.  

• At the bottom of the stack are different personal data streams. 
For our deployment and analysis, we used data collected by 
ohmage, an open-source personal data collection platform 
(Appendix A). These streams include intermittent self-report 
data (both prompted and user-initiated) and passive data 
streams collected from sensors and applications on-board the 
mobile device (e.g. accelerometer data, location traces, 
communication app usage, etc.). 

• These data streams are then sent to the feature extraction layer, 
which is the first step in transforming them from raw datasets 
into actionable behavioral indicators. For example, the raw 
accelerometer and location streams are passed to an Activity 
features module to be transformed into meaningful 
classifications of activities (i.e. still, walk, run, drive). After 
features are extracted, they may be further aggregated based 
on spatial and temporal attributes.  

• Features produced by the feature extraction layer are multi-
dimensional with many of them irrelevant or redundant to the 
analysis goal, and therefore need to be further processed by 
the feature selection layer for dimensionality reduction.  

• The inference layer uses the selected features to detect patterns 
and trends, and infer behavioral states.  

• Visualizations, tightly coupled with the analytical building 
blocks, make the analyses available and actionable for the end 
user. 

1 Lifestreams is open-sourced under Apache License Ver. 2.0. The 
source code is hosted on https://github.com/changun/Lifestreams/. 

Lifestreams is designed for behavioral and health sciences 
researchers (our end users) to analyze high-dimensional mHealth 
datasets collected from study participants. Their research objectives 
are to gain insight into a particular condition, or to design and 
evaluate the efficacy of an intervention. In this paper, most of our 
analysis focuses on diet, stress, and exercise data collected during 
an NIH-funded study with 56 Moms, 44 of whom carried mobile 
phones running ohmage. Data streams were captured via self-report 
and passive accelerometry and location traces during the 6 months 
of the study by the Moms; the study is described further in Section 
3. Lifestreams’ existing analysis modules are not meant to be 
comprehensive. They provide an initial set of techniques that allow 
us, and the broader community, to start our data exploration and to 
validate the techniques and findings. We focus on modularity so 
that Lifestreams can be extended and generalized to a wide range 
of research studies with varying types of data streams and research 
goals. 

In the remaining part of this section, we describe each layer of the 
Lifestreams’ data analysis stack. 

2.1 Feature extraction & aggregation 
We use the term feature extraction to refer to a process of 
transforming input data into a representative set of features that 
describe the data and could be used to calculate a behavioral 
indicator. For example, the activity feature modules described 
below produces a stream of important features related to a user’s 
activities throughout the day, using the accelerometer, Wi-Fi 
signature, and location data streams. Through collaborations with 
clinicians and patients, we have identified several disease domains 
in which activity and location patterns are relevant to determining 
the patients’ status. These diseases include depression, chronic 
pain, gastro-intestinal, inflammatory, and auto-immune disorders. 
For each disease and demographic in which such measures might 
be used, domain-specific exploration and knowledge is essential. 
Here we focus on the system support needed to define and refine 
the use of this type of data for a specific study or intervention. In 
the following sections, we introduce each Lifestreams’ feature 
extraction module in more detail. 

2.1.1 Activity features 
Lifestreams currently implements the following activity features:  

• Mobility state per minute. States are still, walk, run, and drive; 
each minute of a stream is annotated with the associated 
mobility state produced by the classifier. While it is 

   
  Figure 1. Lifestreams Data Analysis Stack 
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susceptible to noise from individual classifier errors, it allows 
short events on the order of minutes (not seconds) to be 
identified robustly, e.g., a walk to the water cooler or waiting 
for a long stop light.  

• Mobility events: Mobility events are a higher-level set of 
longer periods of activities, providing an overview of the 
general activity level for the day. This gives a better indication 
of how sedentary and active users were, and when they had to 
travel. This feature includes start and stop time for the event 
and the associated mobility state. 

• Total Distance Travelled: Each mobility event is also 
annotated with the distance travelled during that event. Total 
distance traveled is used to determine how strenuous an 
ambulatory activity is, or how long a drive is. This can help 
determine activity levels or how much the user had to travel.  

• Geo-Diameter: The longest distance between two locations 
included in a mobility event. Geo-Diameter is useful for 
determining how far from home a user traveled during the day, 
and offers additional information to the health researcher 
beyond total distance traveled (see [44] for a sample 
application of geo-diameter). 

Activity events in ohmage are calculated using accelerometer, Wi-
Fi fingerprints, and location traces collected on the phone by 
ohmage. The classification is based on supervised machine learning 
techniques [43]. The activity classification is performed in two 
stages. First, the accelerometer records one second’s worth of 
triaxial samples. To be orientation-independent, it first calculates 
the magnitude of acceleration and then calculates the variance and 
FFT coefficients on the set of values. These are used to classify 
ambulation, i.e., sedentary, walking, or running. If the user is 
classified as sedentary, then the current Wi-Fi fingerprint is 
compared to the access points encountered in the past 10 minutes. 
If the fingerprint has not changed, the user is classified as still. If it 
has changed, the user is presumed to be driving. If there are not 
enough Wi-Fi access points for the comparison, then GPS speed is 
used to determine whether the user is driving or stationary. This 
specific activity classifier is modular and can be replaced by other 
classification techniques, such as in [32] and [35]. 

Our activity classifier produces a series of activity estimates on the 
order of one per minute. Since user routines consist of blocks of 
activities, we calculate activity events, that is, periods of time 
during which the user was in a single activity. To prevent noise 
resulting from occasional miscalculations, we smooth the data, 
ignoring brief changes that revert to the previous activity, such as 
one instance of walking during a period when the user is still. There 
is an obvious tradeoff between responsiveness to short events and 
noise reduction; features can be calculated with various degrees of 
smoothing depending on the objective of the study and the 
noisiness of the data source. 

Once periods of activity are identified, features of the user’s routine 
are calculated from event properties, such as the start and end times 
and duration of the event, and the number of events occurring 
within a time window. Features are also calculated based on 

alternate activity labels. Rather than handling each activity class 
separately, we aggregate results of the same type. For example, 
total cumulative time spent sedentary or in physical activity might 
be used as a behavioral indicator in some contexts. The features 
largely depend on the domain and how they are used. For example, 
if it does not matter whether the user is sedentary in a moving 
vehicle or in a chair at home, the Lifestreams user can aggregate 
drive and still into a single activity class, sedentary. 

2.1.2 Semantic Location features 
Lifestereams also produces a stream of important features related 
to a user’s semantic location throughout the study [22]. Each 
location data point collected by ohmage contains a Wi-Fi 
fingerprint and a GPS coordinate. From this data stream we extract 
features, including: (a) Places: Places are potentially meaningful 
locations to a participant. (b) Duration at a Place: The amount of 
time that one stays at a place. (c) Time of Arriving and Leaving a 
Place. (d) Daily Work Schedule Deviation: The deviation of a 
participant’s daily work schedule from her normal working 
routines. This feature is calculated by the time difference between 
the earliest work arrival time of that day and the median of earliest 
work arrival time of all the working days during the study period. 
Such deviations have been shown by behavioral research to 
correlate with patient’s physical, psychological, and social 
outcomes [39].  

A common approach to discover meaningful places from passive 
location traces is to assume that a place is a location where the user 
stays for more than a certain period of time [4]; such locations are 
revealed with clustering algorithms, where each resulting cluster is 
regarded as a place. A density-based clustering algorithm, called 
DBSCAN, is commonly used for this purpose [9]. DBSCAN 
defines two points as “neighbors” if their distance is below a 
threshold, referred to as Eps. If a point has more than MinPts of 
neighbors (i.e. its local density is high), this point and its neighbors 
are declared as a cluster. Two overlapping clusters will be merged 
into one larger cluster recursively until no cluster is overlapped. 
The advantages of DBSCAN are three-fold: (1) it can reveal places 
of arbitrary shapes; (2) it can work on location traces with arbitrary 
number of places; and (3) its final clustering result does not depend 
on the initial random assignment of the clusters and is more reliable 
[9]. 

However, DBSCAN’s complexity is O(n2), where n is the number 
of data points, and therefore does not scale well to location traces 
collected in real-world studies where n could be quite large. To 
address this problem, instead of extracting places from all data 

Table 1. Five different measures used to compute correlation 
coefficients between quantitative, ordinal, and nominal 
features. 

 Quantitative Ordinal Nominal 

Quantitative Pearson’s r Spearman’s rho Point Biserial rpb 

Ordinal Spearman’s rho Spearman’s rho Rank Bisereal rrb 

Nominal Point Biserial rpb Rank Bisereal rrb Phi 

 

  
Figure 2 Comparison of execution time between the 
traditional DBSCAN and our Two-Phase approaches for 
different amount of samples (sample rate=1/60Hz). Each 
point is an average of 10 runs. The error bars are the 
corresponding 95% confidence interval. 
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points at once, we adopted a two-phase process to first extract daily 
places based on 24 hours of location traces and then merged similar 
places extracted throughout the study into a final set of places. 
DBSCAN is used to identify places in both phases. Phase 1 
DBSCAN extracts the ambient signal signatures that characterize 
the Wi-Fi and GPS signals of each place, and Phase 2 DBSCAN 
merges the places based on the similarity of their ambient signal 
signatures and generates a final set of places. 

The time complexity of our two-phase algorithm is O(K2D+M2); 
where K denotes the number of data points collected daily, D 
denotes the number of days, and M denotes the total number of 
places generated in the first phase.  As shown in Figure 2, when the 
study duration increases from one day to fifteen days, the execution 
time of our Two-Phase DBSCAN approach increases 24.6x as 
compared to 92.6x of the traditional DBSCAN. More importantly, 
our approach can run incrementally (referred to as Two-Phase 
DBSCAN (incremental) in Figure 2). If all places from previous 
days are cached, we only have to run the first phase for those days 
that have not been processed, and re-run the second phase to update 
the final place assignments. These advantages make our approach 
more appropriate for processing evolving location traces for 
mHealth studies. 

2.1.3 Features extracted from self-report data 
Unlike the feature extraction modules that extract features from 
passive data streams, the module that extracts self-report data 
features results in a dimensionality expansion from the original 
dataset.  

Self-report data, captured in the form of surveys, are classified into 
one of the following data types: (1) quantitative (e.g. number), (2) 
text, and (3) categorical (e.g. single choice/multiple choices). The 
quantitative data type is used as is. We have not yet implemented 
text feature extraction but anticipate future NLP plugins to extract 
features such as vocabulary difficulty and sentiment analysis. In 
this section, we describe the transformation of the categorical data 
type which is commonly used in survey questions since it is easy 
for participants to respond.  

There are two types of categorical features — ordinal and nominal. 
For an ordinal feature (e.g. food quality rating as high, medium, low 
options), a rank or number is assigned to each element to indicate 
the order among categorical elements. These assignments are 
usually done by the study researcher and the ordinal values are 
derived from the study configuration. For a nominal feature (e.g. 
cause of stress as relationship, financial, school/work, etc. options), 
all options are independent and have no ranking among them. In 
our analysis, each option is transformed into a binary feature with 
the value equal to one if the option is selected and zero otherwise. 

For a set of features that are possibly correlated, Principle 
Component Analysis (PCA) can reduce them to a smaller set of 
features. In our analysis, we found high correlation among the ten 
options of the mood questions including happy, calm, stress, etc. 
These options are highly correlated as both positive and negative 
mood are not expected to be present simultaneously. Therefore, 
PCA is applied to transform these features into a single feature that 
will have a higher value when more positive mood options are 
selected, and vice versa.  

2.1.4 Data aggregation 
All features derived from different modules can be further 
aggregated, when appropriate, based on statistical functions (e.g., 
min, max, or average), time (e.g. daily or weekly) and/or location. 
For example, all extracted features can be aggregated over an 

arbitrary time period and starting timestamp, both of which are 
adjustable parameters. For our analysis, we aggregate these features 
over 24 hour periods starting at midnight on the first day of the 
study to represent daily data points.  

2.2 Feature selection   
Feature selection is the process of selecting a subset of relevant 
features for use in model construction. Redundant or irrelevant 
features are removed during the feature selection process. Feature 
extraction creates new features from the raw datasets, while feature 
selection returns a subset of these features. We describe a simple 
feature selection module based on pairwise correlation analysis. 
Features with high correlation, using pairwise correlation analysis, 
are then highlighted. Other feature selection modules can be 
substituted, such as principal component analysis (PCA), and 
minimum Redundancy Maximum Relevance (mRMR) [30].  

2.2.1 Pairwise correlation analysis 
A correlation matrix is one of the most common methods used to 
summarize relationships between any two features. However, when 
dealing with a multi-dimensional heterogeneous dataset where 
different features are of different types, one correlation measure 
cannot simply be applied to all features. Five different correlation 
measures are used to compute the correlation coefficients between 
quantitative, ordinal, and binary (nominal) features (see Table 1). 

The proper hypothesis test of each correlation measure is performed 
with no correlation as the null hypothesis. A desired significance 
level (with 0.05 as a default) can be specified. Any correlation that 
does not have sufficient significance level will be excluded. The 
pairwise correlation coefficients by default are calculated across all 
data. However, the user can choose to calculate correlation 
coefficients on subsets of the data through an interactive interface 
(described in Section 2.4); for example, based only on weekday or 
weekend data to investigate weekday/weekend effect. 

2.3 Lifestreams Inference 
Inference is a process of arriving at some logical conclusions from 
premises known or assumed to be true [1]. The Lifestreams 
inference layer focuses on techniques that enable researchers to 
understand user contexts, behaviors, and changes, based on 
selected features. We provide three different inference methods to 
investigate long-term relationships between participants’ behaviors 
and to detect behavior changes from the participants’ behavioral 
data streams. 

2.3.1 Correlation summary 
The pairwise correlation coefficient is useful for exploring 
relationships or dependencies between any two sets of time-series 
data. A strong and significant correlation indicates consistent 
relationship throughout the entire time-series. The pairwise 
correlation analysis module calculates a three-dimensional (3D) 
correlation matrix across all pairwise features and participants. 
However, the 3D matrix is large and hard to visualize. The 
correlation summary module is a thin layer on top of the pairwise 
correlation analysis that provides different capabilities to quickly 
shift through the large 3D data and draw conclusions about long-
term relationships, such as pairwise correlation for an individual 
and similarity across individuals.  

The 3D matrix can be filtered by individual participant and by a 
threshold value to produce a 2D correlation matrix for that 
individual. The 2D matrix shows only features with correlation 
coefficient values stronger than the specified threshold (e.g. 0.3). 
This capability allows researchers to quickly explore pairwise 



features with different coefficient values. A statistical summary 
matrix capturing similarity across all participants based on different 
coefficient thresholds can be calculated. This matrix shows, for 
each pair of features, the number of participants with the correlation 
coefficient greater than or equal to a specified threshold. We can 
further filter this matrix by only showing pairwise features with the 
number of participants greater than or equal to a specified value 
(e.g. 25%). This capability will allow researchers to identify 
common pairwise relationships among participants. We show 
examples of these plots based on our pilot data in Section 3.3.  

2.3.2 Change detection (single feature) 
The ability to detect changes in an individual’s behaviors will 
enable behavioral and health sciences researchers, as well as 
context-aware applications, to react accordingly and to provide 
active-interventions to participants. For example, a mobile app 
could display stress reduction techniques to a participant when 
changes that have previously-resulted in higher-level stress are 
detected. In this section, we introduce the change detection module 
that detects behavior changes on each individual feature. We will 
introduce another change detection module that detects the 
correlation changes between pairwise features in Section 2.3.3. 

We model the behavior change detection problem as a statistical 
change detection problem. We detect behavior changes by 
comparing the distributions of recent observations of the 
participant’s behavior with previous observations, and identifies a 
potential behavior change when these two distributions are 
significantly different. Such statistical change detection approaches 
have been applied in many fields, such as finance, robotics, and 
quality control [19, 24].  

Our iterative procedure for behavior change detection algorithm 
works as follows given a sequence of observations x1, …, xt, … , 
where xt is the observation at time t. Suppose we want to know if 
any behavior changes have occurred before time t. We apply a two-
sample test to every possible splitting point 𝑡𝑡′ ∈ (1, t) and compute 
the test statistic 𝐷𝐷𝑡𝑡′𝑡𝑡 that estimates the degree of difference between 
the distributions of {x1, x2, … xt’} and  { xt’+1, xt’+2, … xt}. Let t* 
denote the time 𝑡𝑡′ that maximizes 𝐷𝐷𝑡𝑡′𝑡𝑡 among all possible 𝑡𝑡′, and 
compare 𝐷𝐷𝑡𝑡∗𝑡𝑡, which is the maximum 𝐷𝐷𝑡𝑡′𝑡𝑡 for all possible splitting 
point 𝑡𝑡′, with a pre-defined threshold. If 𝐷𝐷𝑡𝑡∗𝑡𝑡 exceeds the threshold, 
we declare that a change has occurred at time t*. After a change 
point has been identified, the observations before the time t*, that 
is, {x1,… xt*}, will be discarded, and the procedure restarts. 

The core issue of such a statistical change detection algorithm is to 
define a test statistic that best suits the characteristics of the 
observations. Behavioral data is known to be non-normally 
distributed and might not satisfy the assumptions of many 
parametric statistics [31]. Therefore, we adopt the Mann–Whitney 
(MW) test, which is a non-parametric test, to estimate test 
statistic 𝐷𝐷𝑡𝑡′𝑡𝑡  for quantitative and ordinal behavioral data streams 
[38]. The MW test performs a two-sample test based on the ranks 
of observations instead of the raw values. Although it is less 
sensitive than Student-t test, we found the MW test to be a more 
appropriate choice for behavioral data.  For categorical binary data 
streams, we adopt Fisher's exact test, which is a common test used 
to detect distribution changes in a Bernoulli sequence [33]. 

Two parameters have to be determined for this algorithm. Startup 
time is the number of observations after which detection begins; it 
is necessary since the statistical test has low power for a small 
sample size. ARL0 is the expected time difference between a false 
positive detection and the real change point; the size of ARL0 
determines the threshold levels at different times t. There is a 

tradeoff between the responsiveness of the detection algorithm and 
the expected duration of the detected changes. We will investigate 
this tradeoff in Section 3.4 in more detail based on participants’ 
data. 

Figure 3 provides a walkthrough of our change detection algorithm. 
Each green circle on the bottom plot indicates an actual observation 
on a different Day t, and each blue circle on the top plot indicates a 
computed 𝐷𝐷𝑡𝑡∗𝑡𝑡  for that day. The algorithm will not start to detect 
any changes until after startup time (20 days). Initially, there are a 
number of anomalies observed between Day 20 and Day 30. 
However, these anomalies do not last long and are not consistent 
enough to trigger change detection. From Day 98, the algorithm 
starts to observe more consistent higher-level outcomes, and on 
Day 111, when the computed 𝐷𝐷𝑡𝑡∗𝑡𝑡 exceeds a specified threshold, 
the algorithm determines that a change was observed on Day 98.  

An R package, called cpm, is used to implement the above-
mentioned change detection algorithm [33]. Since many 
individuals have different patterns during the week and weekend, 
we introduced a weekday/weekend/all parameter (with weekday as 
a default) to identify different subsets of data for analysis. 

2.3.3 Correlation change detection (pairwise) 
The pairwise correlation described in Section 2.3.1 is useful for 
exploring long-term relationships between any two behavioral 
features. However, the overall pairwise correlation cannot capture 
the changes of relationships between two features and may 
overlook important information. The change detection on pairwise 
correlation addresses this issue. The detection can be used to 
identify changes in behavior or to discover the shorter-term 
relationships that could be overlooked in the overall correlation 
analysis. 

We introduce two techniques — pairwise correlation change 
detection and moving average—to further investigate changes in 
behavior based on pairwise features. The correlation change 
detection is modeled in a similar way as the single feature change 
detection. The main difference is that the test statistic for deriving 
𝐷𝐷𝑡𝑡′𝑡𝑡 is calculated based on two sets of observations from the both 
features. We implemented a detection algorithm developed by 
Wied et al. [37] to detect the pairwise correlation changes. There 
are two parameters required for this algorithm: (1) start time m 
assumes that the correlation will remain constant among the first m 
observations. (2) r is a parameter that determines the threshold 
function. A higher value of r results in a higher false alarm rate, but 
with shorter detection delay. We select the parameter values m = 20 
and r = 0 as a default for a longer detection time, but lower false 
positive rate. 

   
Figure 3. A walkthrough of the change detection algorithm 
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Moving average is a technique commonly used in time-series data 
analysis to provide an estimate of the trend of the observations [8]. 
Moving average smooths out short-term fluctuations and reveals 
the longer-term trends of the data. Each data point is an average of 
a subset of data extracted around the original raw data point e.g. a 
subset of 7-day data starting from the current day.  

In our analysis, we transform the original dataset using the seven-
day moving average before applying the pairwise correlation 
change detection algorithm. Similar to single feature change 
detection, a parameter weekday/weekend/all can be specified. 

2.4 Lifestreams Visualization 
The purpose of Lifestreams visualization is two-fold: (1) to allow 
researchers to quickly and flexibly navigate through high-
dimensional personal data streams by focusing on important 
trends/patterns, and (2) to explore visual aids for an intervention, 
such as to guide discussions with patients in clinical or coaching 
sessions. It allows users to interactively select different feature 
groups (e.g. diet, stress), switch between different visualization 
views, adjust visualization parameters, and export the visualization 
results. We describe a few examples of visualization views below. 

(1) Behavior Change View displays time-series plots of individual 
features and allows users to select only features that contain 
potential change points during the study (Figure 4a). This 
function helps researchers select features with potentially-
noteworthy trends from a large feature pool. 

(2) Place View marks the locations that are potentially meaningful 
to a participant on an interactive map interface (see Figure 4b). 
These locations are identified by the Location Analysis 
module described in Section 2.1.2. In interviews with the 
participants, we found this interactive map, along with the 
time-related statistics, such as the amount of time spent in each 
place, and the arrival and departure time, are particularly 
useful in helping participants to recall the semantic meanings 
of different places (e.g. home, work place, gym, children’s 
schools, and etc.). This semantic information is in turn used in 
transforming the participants’ raw location traces to more 
meaningful behavioral features. 

(3) Day View uses ANalysis Of VAriance techniques (ANOVA) 
to evaluate how a patient’s behaviors vary throughout the day 
[18]. For example, Figure 4c shows that this participant’s 
stress level and mood tend to have statistically significant 
variation at different times of day (i.e. the p-value ≤ 0.05). 
Such analysis is particularly useful when self-report data 
exhibit high variation and recall biases depending on the hour, 
such as how much food, how hungry, current stress levels, etc.  

(4) Time View plots the change points of different features on a 
single timeline (see Figure 4d). It provides an overview of a 
participant’s behavioral trends and suggests potential 
interactions among different behaviors (e.g. an increase in 
stress level shortly after an increase in working hours). 

  
Figure 4. Lifestreams visualization allows users to interactively select different feature groups, switch between different visualization 
views, adjust parameters, and export the visualization results. Users can use Lifestreams visualization to quickly and flexibly 
navigate through vast and high-dimensional personal data streams and create visual aids to guide the discussion with patients or 
participants. (Note that the geo-information in the Place View has been obfuscated to protect the participant’s privacy.) 
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3. EXPLORING A REAL DATASET WITH 
LIFESTREAMS 
In this section, we explore the accuracy and utility of Lifestreams 
inference methods by applying them to the data collected from 44 
Moms who carried smartphones in a 6-month, NIH-funded study 
of cardiovascular disease risk factors in young mothers. We 
compare the output from the analyses with qualitative information 
obtained directly from the participating Moms about their diet, 
stress, and exercise. We find that in many instances, Lifestreams 
inference methods were able to automatically identify trends and 
changes that were confirmed by participants. 

These analyses are intended as illustrative examples that could be 
adapted to the other use cases, such as: to provide feedback for 
patients in a behavioral intervention program targeting the 
management of diet, stress, and exercise; to design a visual aid for 
patient portals or clinical visits; or to provide information to health 
researchers and coaches about a participant's context and trends in 
behavior. 

3.1 The dataset: diet, stress, and exercise in 
young moms 
In our study, behavioral researchers used Lifestreams to study 
cardiovascular risk factors in young mothers. The purpose of the 
study was two-fold. First, to evaluate the validity and reliability of 
the phone in capturing diet, stress, and exercise for women; and a 
secondary aim to evaluate the efficacy of using the phone for 
behavior change. Basic measurement parameters included a 
participant’s daily exercise routines, their diet, and their stress and 
mood levels throughout the day measured by survey; and a 
participant’s accelerometry, location traces, and mobility states 
recorded continuously using our automated mobility classifier. 

56 young moms residing in the Los Angeles area participated in the 
study January 2012 - March 2013. Of the 54 moms who completed 
the study, the experimental group consisted of 44 moms who used 
our smartphone application to collect data. Of the 44 Moms’ 
ethnicity and races were diverse and their ages range from 18 to 40 
with an average of 30 years old. 15 moms worked full time, 24 
moms worked part time including studying, and 17 moms worked 
in the home. All moms had at least one child living at home. The 
study start date of each mom varied from January in 2012 to 
September in 2012. 52 moms had completed their study with an 
average duration of 7 months. 4 moms dropped out in the middle; 
two moms became pregnant and the other two did not specify. 
Lifestreams visualization was ready for use in January 2013 for a 
qualitative study involving 8 out of 44 moms during their in-person 
interview discussions. 

15,599 survey responses were collected across 44 moms in the 
experimental group. The responses are distributed uniformly across 
the four surveys, 4,248 (27%) morning surveys, 3,968 (25%) 
midday surveys, 3,722 (24%) late afternoon surveys, and 3,661 
(24%) bedtime surveys. The average of survey numbers answered 
per user is 354, and participants answered 2 surveys on average per 
day during periods where participants answered at least once. A 
total of 115,228 questions were answered, with an average of 2,619 
questions per participant and 16 questions per participant per day. 
The most popular questions participants persistently answered were 
'Have you eaten since you completed your last diet survey?' at 
midday, 'Have you felt stressed in the last two hours?' in the 
morning, and 'How many hours in total did you sleep last night?' 

The participants could choose to turn on or turn off the mobility 
data collection. 3,834 days of mobility data were collected from 44 

moms with a minimum of 5, a maximum of 202, and an average of 
87 days. Since the number of the entire study days across all moms 
is 7,272 days, participants contributed mobility data during one-
half of their study period on average.  

3.2 Data analysis results and discussion 
The analysis presented here uses self-report survey data and passive 
accelerometry and location data streams from the Moms. The 
survey data consists of 47 questions grouped into 4 different 
surveys for participants to complete in the morning, midday, late 
afternoon and evening. The self-report data are transformed into 
extracted features using techniques described in section 2.1.3 
including nominal data transformation and PCA. A set of activity 
and location features was extracted from the passive activity and 
location data streams. All data are aggregated into a daily summary. 
At the end of the feature extraction and aggregation process, there 
are 142 features extracted for each participant.  

In the remainder of this section we discuss results derived using 
several inference modules used in this study. In each section we 
describe findings for a single exemplar participant in order to 
highlight the utility of the modules. Agreement between events and 
relationships identified by the modules and qualitative data from 
participants indicates the utility of the modules in automatically 
identifying important features that could not otherwise have been 
found through manual parsing. 

3.3 Correlation Summary  
Correlation analysis allows researchers to infer high-level, long-
term, behavioral patterns. We use Cohen's conventions to interpret 
correlation coefficient of behavioral data [31]. A correlation 
coefficient of .10 is thought to represent a weak or small 
association; correlation coefficients of 0.30 and 0.50 are considered 
as moderate and strong correlation, respectively. Only significance 
levels greater than 0.05 (i.e. p-value ≤ 0.05) are considered as 
statistically significant. 

3.3.1 Individual 2D correlation matrix 
A participant’s 2D correlation matrix among pairwise features can 
be used to infer her long-term behavioral patterns. Figure 5 shows 
a specific participant’s 2D correlation matrix where only the pairs 
of features that exhibit correlation greater than or equal to 0.30 are 
shown. 

This matrix shows many interesting relationships between different 
aspects of the participant’s behavior. For example, her daily work 

 
Figure 5. Individual 2D correlation matrix of a participant. 
This figure shows correlations between the participant’s 
working schedule, stress levels, exercise routines, and daily 
activity patterns. 
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schedule deviation (1st row) shows moderate correlations with both 
her daily overall stress level (5th row) and the late afternoon stress 
level (11th row). Note that the work schedule deviation is defined 
in Section 2.1.2 and the daily overall stress level is the stress level 
that a participant rated before bedtime. These correlations between 
work schedule and the mentioned stress levels were confirmed by 
the participant—she mentioned that her occasionally-varying work 
schedule was one of her causes of stress since she could not 
maintain her regular routines on those days when her work schedule 
changed. This result also aligns with behavioral studies of working 
schedule control [39]. 

The matrix also reveals a strong negative correlation between the 
daily amount of time she spent in Place 1 (new house; 4th) and 
Place 2 (old house; 3rd row); which is consistent with the 
participant moving into a new house during the study period. 
Moreover, the correlation matrix highlights moderate to strong 
correlation between her new house and lower stress levels, less 
concern about finances, and increased time for herself; all of which 
were confirmed by the participant. In addition, when she had a 
larger daily geo-diameter (15th row) or a longer driving distance 
(16th row), her cause of stress was more likely due to the traffic (6th 

row). Finally, there is a strong correlation between her reported 
exercise time and the daily walking time detected by our activity 
classifier. This was also verified by the participant, who reported 
that her primary exercise activity was walking around the 
neighborhood.  

3.3.2 Correlation statistics across all participants  
In addition to the 2D correlation matrix for an individual, a 
population-wise 3D correlation matrix can provide researchers with 
an overview of significant patterns among the population, and can 
also help an individual understand how they fit in with the broader 
population. Figure 6 shows a selective set of pairwise features that 
have at least 25% of participants with correlation coefficients 
higher than 0.3. Note that the number of participants and/or 
coefficient levels can be changed to different thresholds. For some 
pairwise features the data show consistent correlation across 
multiple participants. For example, there are 11 participants that 
have a negative correlation between whether they exercised or not 
(2nd row) and daily overall stress level (12th row), and between the 
time they had to themselves (8th row) and daily overall stress level. 
Moreover, interestingly, comparing the stress levels at different 
times of day and the overall stress level, only 8 participants show 

positive correlation between the reported morning stress level (11th 
row) and the overall stress level (12th row), while 19 and 20 
participants show positive correlation between the reported mid-
day stress level (10th row) and the overall stress level, and the late-
afternoon stress level (9th row) and the overall stress level, 
respectively. 

In addition, for some pairwise features (e.g. whether a participant 
exercised vs. planning to exercise), the data show both positive and 
negative correlation among different participants. For example, for 
one participant, having a plan to exercise (3rd row) has a negative 
correlation with whether the actual exercise took place (2nd row). 

3.4 Single feature change detection 
We found the single feature change detection algorithm (described 
in Section 2.3.2) to be one of the most useful building blocks in 
helping researchers make sense of behavioral data. Feedback from 
participants and the study coordinator was consistent with this 
finding.  

Figure 7 shows sample change detection results for participant 016. 
The solid vertical lines in the plots indicate the change points 
estimated by our change detection algorithm, and the dashed lines 
following the solid vertical lines indicate the time when the 
corresponding change is detected by the algorithm. Based on the 
information we learnt in a follow-up interview with the participant, 
we found that the change detection results were consistent with the 
participant’s real life events. This participant is over-weight and 
reported that she became more concerned about her health around 
the beginning of June. This can be seen by the increasing number 
of times she reported her health as the cause of the stress (3 is the 
maximum number per day), and the increasing daily overall stress 
levels, both of which are detected by our algorithm. In addition, she 
also reported that she stopped eating at restaurants and enrolled in 
a weight-watcher program, which corresponds to the improvement 
in food quality detected in June and July. Moreover, the participant 
reported taking a two-week family trip at the beginning of July, 
which can be seen from the increase in her driving distance as well 
as the decrease in the walking time around the same period.  

 

 
Figure 6. A 3D correlation matrix of all 44 participants. 
This figure shows an overview of significant patterns among 
the participants. The number on the left (and right) of each 
cell indicates the number of participants with negative (and 
positive) correlation coefficients higher than 0.3.  
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Figure 7. Sample single feature change detection results for a 
participant (Startup=30 days, ARL0=500). This figure shows 
changes detected across daily stress levels, diet, exercise 
routines, and driving distances. 
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Even though Lifestreams cannot know the specific events that 
caused the detected changes, the visualization and analytics may 
help a study coach narrow in on important timeframes and 
behaviors where significant changes occur. Automated analyses for 
example, could help healthcare providers give feedback when 
stress levels begin increasing, and identify the triggers of changes 
to deploy proper interventions.  

As shown in Figure 7, the change detection algorithm usually 
detects changes within a month after the changes occurred, and 
some of the changes were temporary (e.g. the increase in driving 
distance) while some of them lasted longer (e.g. the increase in 
stress level). There is a tradeoff between the responsiveness of 
change detection and the expected duration of the detected changes; 
and this tradeoff can be made by adjusting the two parameters of 
the change detection described in Section 2.3.2. Figure 8 shows the 
effects of different values of these two parameters. Each point in 
the figure is an average of all the changes detected in 142 features 
of 44 participants, and the error bars are the corresponding 95% 
confidence intervals. With a shorter startup time or a lower 
threshold (i.e. lower ARL0), the algorithm is able to detect changes 
earlier, but it also results in a shorter average change duration—the 
average time interval between two consecutive change points. A 
shorter average change duration indicates that the algorithm 
detected more short-term changes. The change detection should be 
adjusted to fit the purposes of different applications. For example, 
an intervention program might want to detect changes as early as 
possible to provide participants with timely feedback, but a study 
on the effect of a new depression treatment might be willing to trade 
the responsiveness of change detection for a higher probability that 
the detected change was persistent. The results presented here can 
be used as a guideline for Lifestreams users to choose the 
parameters that best fit their purposes.  

3.5 Pairwise correlation change detection  
Another type of change detection, as described in Section 2.3.3, is 
to detect changes in the correlation of pairwise features. We applied 
this technique to all pairwise features of each participant. Figure 9 
shows a sample result of correlation change detection for 
participant 016. As with the change detection, the solid vertical line 
indicates the estimated change point, and is followed by a dashed 
line indicating the time when the algorithm can detect the change. 
In the beginning of the study, her daily stress level was strongly 
correlated with whether she exercised with her child (with a 

correlation of 0.68), but after mid-August, the time when her school 
starts, the correlation between these two features became 0.07, 
which is considered as weak or no correlation.  

Interestingly, looking at the overall correlation number of the whole 
study period would not have been useful in detecting the strong 
relationship between these two features at the beginning of the 
study. It is only when the time-series is segmented into two 
components that the pattern during the first three-fourths of the 
study emerges.  

Figure 10 shows another example of correlation changes. It shows 
that, for participant 029, while the overall correlation between daily 
exercise time and stress level is weak (0.1), the correlations of 
different subsets of time are much stronger: The correlation 
changes from -0.58 before the first change point, to 0.71, and then 
back to -0.45 after the second change point. The first change 
timeframe is consistent with the beginning of the summer class 
session 1 of her school when the participant started to spend more 
time exercising due to weight concern/stress which then tapered off 
during summer class session 2 when she started to fall back to the 
minimum routine exercise required by her position. After mid-
summer session 2, her high stress was reported to be due to class 
work required for advancing in her position and she spent less time 
exercising due to class load, hence the negative correlation.  

4. EXTENSIBILITY AND 
GENERALIZABILITY OF LIFESTREAMS 
This section evaluates the extensibility and generalizability of 
Lifestreams by demonstrating how Lifestreams can be useful for 
both smaller preliminary explorations (Family Wellness), and 
larger more mature studies (Mobilize); they also demonstrate how 
readily new analyses can be added to Lifestreams and applied to 

 
Figure 8.  Tradeoff between the responsiveness of change 
detection and the time the detected changes are expected to 
last. With a shorter startup time or a smaller ARL0, the 
algorithm detects changes earlier, but also tends to include 
temporary changes. 
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Figure 10. A sample correlation change detection result for 
the other participant. 
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Figure 9. A sample correlation change detection result for a 
participant. This figure shows how the correlation between 
two features may vary over time. 
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additional data streams such as audio data and phone usage data 
that were not originally contained in Lifestreams. In this section, 
we briefly describe the two studies, their unique requirements, how 
Lifestreams modules were reused or newly developed to fulfill 
these requirements, and preliminary findings.  
4.1 Family Wellness Study 
Family Wellness is a pilot study aimed to evaluate the feasibility of 
using mobile technologies for familial behavior studies. To date, 15 
families have been recruited and completed the study.  All families 
included mothers and one child aged 10-14, and about half also had 
fathers participating. The participants used ohmage to answer four 
surveys a day for two weeks about their interactions with each 
other, and individual-level responses on stress and affect. In 
addition, the participants ran a smartphone-based audio sensing 
application that collected and uploaded in situ audio features used 
to classify speech versus non-speech in the environment.  

For this study, we reused the existing self-report module and the 
correlation analysis module, and developed two additional modules 
including: 1) an audio data extraction module to extract audio 
features; and 2) an inter-user correlation module to investigate 
interactions among family members. 82 lines of code were added 
to implement these two additional modules while 468 lines of code 
in pre-existing modules were reused for this study. We report our 
preliminary analysis results below: 

(1) Correlation between the audio data and family interactions. 
Due to the exploratory nature of the audio data collection module, 
only one participant’s complete audio data was captured and 
analyzed.  For this particular participant, there was significant 
correlation between speech/non-speech audio features and self-
reported family interaction. For example, daily speech time 
detected by the application is highly correlated with the levels of 
argument reported with the study child over a day (coefficient = 
0.85, p-value < 0.001) and with the levels of argument reported 
specifically in the evening (coefficient = 0.75, p-value < 0.01). 
While more data are needed, these preliminary results suggest that 
there is a potential value in applying audio sensing in such a 
context, and the researchers are planning a larger scale study. 

(2) Discordance among family members’ subjective feelings. 
The inter-user correlation module enables researchers to compare 
the responses from multiple individuals. For some families, the data 
show that all three family members have similar responses on 
objective questions, such as how much time they spent together; as 
indicated by the high correlation between their responses. In these 
same families, however, the data exhibit much more disagreement, 
on subjective questions, such as how is the overall condition of the 
family, as indicated by low or none correlation.  

4.2 Mobilize: Mobilizing for Innovative 
Computer Science Teaching and Learning 
Mobilize (mobilizingcs.org) is an NSF-funded educational 
program that brings computational thinking, and data collection 
and analysis skills into the LAUSD STEM classrooms through the 
use of participatory sensing technology. During the deployment in 
2013, 446 high school students from 21 classes in 8 schools used 
ohmage to submit surveys and interpret data on three different 
subjects—Explored Computer Science (ECS), Mathematics, and 
Science. In addition to using ohmage, some students also ran 
Systemsense, which is an Android-based system logging 
application that captures and analyzes participants' phone usage 
[13]. Lifestreams is used to answer the following two questions: 1) 
whether the students' engagement with the study varied across 

different classes or different subjects, and 2) whether the students’ 
attachment to the phone impacts their data collection engagement. 
The first question is useful in understanding the effectiveness of 
different pedagogy methods, and the second question will help 
program managers decide whether to invest in phone access to 
encourage engagement.  

The survey submission counts are used as a metric to measure the 
student’s engagement in a class. The one-way ANOVA analysis 
module (see Section 2.4) reveals that the students' survey 
submission counts differed significantly across subjects, classes 
and teachers. For some teachers with multiple same-subject classes, 
the results show consistent pattern among their classes. These 
results indicate that classroom management including individual 
pedagogy method is a significant factor in student participation. 

To answer the second question, we developed a data extraction 
module to extract phone usage features of the 90 students with the 
Systemsens data. These features include the interaction time with 
the phone, the amount of time the phone is power-on, the amount 
of network usage, the number of apps installed, camera usage 
events, and etc. A regression module is developed based on lme4 
package to estimate the effect of phone usage on the student 
engagement [41]. To adjust for the effects from different classes 
and subjects, we introduce two random-effect variables, one for 
class effects and the other for subject effects. The Class effect 
variable varies across different classes, but remains constant within 
the same class, and a similar property applies to the Subject effect 
variable [40]. Using this model, we found that logarithm of the 
mean phone interaction time and the amount of network usage both 
have small but statistically significant positive effects on the survey 
submission counts (coefficients = 0.082 and 0.045, both p-values < 
0.0001). This indicates that the attachment to the phone may have 
effects on the students’ engagement with the data collection. In 
total, 203 lines of code were added to implement the additional 
modules for this study, and 393 lines of code were reused.  

5. LIMITATIONS AND CHALLENGES 
Our analyses suffer from incomplete or missing data due to 
misunderstanding, participants’ constraints, and technical problems 
such as phone malfunction and battery consumption issue. 
Currently, Lifestreams treat missing data in survey responses by 
excluding them from the analyses (e.g. pairwise deletion in the 
correlation analysis) and treat missing sensory data, such as 
activity, audio, and location data, by setting a cutoff threshold (e.g. 
any day that has less than 70% of coverage or less than 16.8 hours 
of data will be ignored). The missing data would cause problems in 
certain analyses such as the change detection. In the future, 
statistical methods of data augmentation will be used to infer and 
impute the missing data.  

Furthermore, the phone-based sensing applications may sometimes 
fail to capture users’ behaviors.  For example, some participants did 
not carry their phones during exercise, and some left their phones 
stationary all day. While some of these specific usability problems 
can be mitigated by using wearable sensors such as Fitbit [42], and 
others were an artifact of the participant having a second primary 
phone, a broader challenge is to create a more engaging mobile user 
experience and more sophisticated data models. 
Some statistical results (e.g. the number of changes detected per 
dataset) shown in the analysis are sensitive to the parameters. As 
with most statistical methods, many of the analysis techniques in 
Lifestreams require iteratively tuning and validation based on the 
“ground truth”. In this paper, we use the qualitative interview data 
as the ground truth. However, participants’ descriptions of their 



condition might be inaccurate, or it might be hard or inappropriate 
to elicit certain information from the participants. Expert domain 
knowledge from behavioral and health science researchers is 
needed to provide further insight into and help validating the 
results. 

This version of Lifestreams was designed for researchers or highly 
trained individuals who have familiarity with statistics or at least 
extensive experience in their domain. The analytic modules are 
intentionally highly configurable and provide detailed information 
that allows users to interpret the results. Such amounts of flexibility 
and information, however, would be overwhelming to users in a 
real-world clinical setting where time per patient is limited and 
regulated. Much work will be needed, both in analysis methods and 
interface designs, to summarize information and produce results 
that are more accessible to busy users. More generally, there is 
significant work to do related to the data collection, validation and 
generalization of these techniques. 

6. RELATED WORK  
Lifestreams utilizes contextual data analysis, data mining, and the 
collection of personal data streams. Therefore this related work 
section covers all three topics, starting with the use of mobile 
phones to collect personal data streams.  

6.1 Collection of personal data streams 
6.1.1 Active data capture with mobile phones 
Traditional methods of self-monitoring through retrospective self-
report are prone to errors and biases due to limitations of 
autobiographical memory [7, 36]. For this reasons, mobile devices 
offer the advantage of supporting active data capture from 
participants in the context of their everyday lives and closer to real 
time. A structured, in context, form of real time self-report, referred 
to in the literature as Ecological Momentary Assessment (EMA), 
was developed to monitor affect, cognitions, and behaviors in real 
time in a person’s natural environment [21]. Error and bias are 
reduced by collecting and recording data in real time. 

On the other hand, self-monitoring has been shown to encourage 
behavior changes and increases adherence by supporting self-
awareness and self-efficacy [11, 12, 29]. Lifestreams is designed to 
supplement such interventions by making self-monitoring data 
more actionable by helping to identify patterns and trends in 
detailed datasets. 

6.1.2 Passive data capture from mobile phones 
In recent years smartphones have been increasingly used for 
passive data collection from on-board sensors. Phones can 
determine their location by detecting nearby cellular and Wi-Fi 
access points, or directly with GPS. Eagle and Pentland [13] 
conducted the Reality Mining study, gathering Bluetooth, GSM, 
and application usage data to build models for social systems. 
SystemSens and Funf [17, 3] likewise captured many data signals. 
Earlier, Ubifit, demonstrated the power of passive monitoring of 
activity for behavioral feedback on physical activity [10]. 
Lifestreams builds on this work, and is designed to integrate with 
personal data collection platforms, as we described in Section 2, 
through integration with the personal data collection platform 
ohmage.  

6.2 Context data analysis 
The data collected autonomously by mobile phones can be used to 
infer the smartphone’s context, and by proxy, the user’s as well. 

Activity classification and semantically meaningful locations are 
two such inferences that help phone to learn user patterns. 

6.2.1 Activity classification 
One important aspect of user context is activity classification using 
mobile sensors. Before smartphones became common, research in 
this area used specialized sensors [5]. More recently, with data from 
smartphone accelerometers and location sensors, phones can 
classify the user’s activity, such as driving, walking, running, etc. 
[32, 35]. Features such as variance of magnitude of acceleration are 
calculated from the raw triaxial accelerometer data and, with GPS 
speed or other location change information, are used to infer the 
user’s ambulatory or transport mode. These inferences lend 
themselves well to behavioral indicators relating to activity level. 

6.2.2 Place detection 
Another important type of context information relevant to users and 
their routines is location. Modern smartphones are equipped with 
GPS that ascertains geographic location given satellite reception. 
In addition, they also have Wi-Fi and cellular radios, which can be 
used to provide the user’s rough location by identifying nearby 
access points [25].  

More important than raw coordinates are semantically meaningful 
locations, such as home or work. Significant locations in a user’s 
pattern can be learned through processing location traces to infer 
which locations, defined by a geographic location, are important to 
the user [4, 27].  

Lifestreams analytical building blocks incorporate the ideas from 
this work. For example, location analysis and activity feature 
extraction building blocks process the raw sensor data and extract 
a stream of robust context values, which can be aggregated into 
higher-level features that are intensively used in the further analytic 
modules to enable powerful inference to participants’ behaviors. 

6.3 Data mining with mobile data 
Several projects have demonstrated the power of data mining and 
machine learning to infer user-status from mobile phone data. The 
Reality Mining project [13] infers people’s routines from their 
location (divided into home, work, elsewhere) from nearby cell 
towers and Bluetooth devices. BeWell [26] infers daily scores for 
sleep, activity, and sociality of users using various smartphone 
sensors. MoodSense [28] passively collects phone usage data such 
as emails, web history, and calls, as well as locations to estimate 
the user’s mood. Eigenbehaviors [14], on the other hand, classifies 
human daily routines by using principle component analysis on 
temporal location data. 

Lifestreams differs from these studies in two ways: (1) instead of 
providing several specific inference methods, Lifestreams is aimed 
to provide a suit of extensible analytics building blocks to facilitate 
the development of new inference functions. (2) As compared with 
some studies in which the inference results are used as a service or 
feedback to the user, Lifestreams’ inference functions are more 
focused on providing researchers and designers of interventions 
with insights to the participants or patients’ behaviors. 

7. CONCLUSION / FUTURE WORK 
The key contribution of this work is Lifestreams, which is a data 
analysis software stack consisting of four layers—feature 
extraction and aggregation, feature selection, inference and 
interactive visualization—as well as an initial set of analytical 
building blocks. Lifestreams facilitates the exploration and 
evaluation of multi-dimensional personal data streams for potential 
behavioral indicators.  



Using Lifestreams’ analytical pipeline, we present three sets of 
analysis results based on our inference methods to help make sense 
of a real-world dataset. These inference methods identified 
significant behavioral trends and patterns, and their accuracy were 
qualitatively verified in follow-up interviews conducted with 
participants. In addition, Lifestreams was found to be useful as a 
tool for the research coordinator to quickly navigate through the 
data and provide visual aids to guide the discussion with 
participants during interview sessions. 

Lifestreams is designed to be an extensible system that can be 
generalized and applied to different studies containing varying data 
streams. We evaluated Lifestreams’ extensibility and 
generalizability by applying it to two additional studies with unique 
requirements and new types of data streams. 

Ultimately, researchers will develop interventions that can greatly 
improve the personalization and precision of patient-centric care. 
For example, consider a rehabilitation program for patients with hip 
surgery. A healthcare provider could deploy a mHealth study in 
which 50 patients are asked to use phones to passively monitor their 
mobility. During the study, the provider would use a tailored 
instance of Lifestreams to check the data weekly and identify if 
patients are having any trouble complying with the study 
requirements. After a few months, when a large amount of data has 
been collected and is ready for the provider to analyze, she could 
use Lifestreams to study the interaction between patients’ recovery 
progress and their daily life behaviors; such as working schedules, 
sleep patterns, stress and mood, each automatically extracted by the 
Lifestreams’ feature extraction modules. Moreover, the provider 
could use Lifestreams to monitor if significant change occurs in the 
patients’ recovery progress and other related behaviors in response 
to a new treatment plan. Assisted with the visualizations generated 
by Lifestreams, the provider could use this information to guide the 
discussion with patients and families, to provide feedback, to 
identify triggers of the changes, and to help patients with problem 
solving, goal setting, and monitoring progress towards goals. 

Personal data stream platforms collect a wealth of high-resolution 
data about an individual and their context. However, the promise of 
mHealth to truly revolutionize patient care and actualize the 
information collected lays in the ability to translate the information 
collected into simple and meaningful insights about an individual. 
Lifestreams attempts to take the first step to achieve that goal. 
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APPENDIX A: Ohmage: An Extensible, Open 
Source Software Platform 
In this appendix, we briefly introduce ohmage, which is a personal 
data collection platform Lifestreams is built on top of. Ohmage 
(http://ohmage.org) is an open-source, mobile to web platform that 
supports the collection, storage, analysis and visualization of 
personal data streams. These include intermittent self-report data 
entered by the user, as well as continuous streams of data passively 
collected from sensors or applications on-board the mobile device 
(e.g. activity and location traces). Ohmage additionally includes 
rich system and user analytics to instrument the act of participation 
itself and ultimately to provide user contexts, patterns and 
interventions. Ohmage is feature-rich and extensible, and facilitates 
the collection of multi-dimensional, heterogeneous and complex 
personal data streams. Ohmage is therefore an ideal platform for 
integrating with Lifestreams for development and evaluation. 

Ohmage is divided into three primary components: 1) the ohmage 
server (which includes a private back-end datastore), 2) the ohmage 
client app and supporting phone software, and 3) the ohmage 
administrative website.  

The phone client also acts as an aggregator through which other 
ohmage plugins can upload sensor data for the user to ohmage. 
Rather than being defined with the study, sensor data that is 
collected continuously in the background (also called ‘passive data 
collection’) is instead defined globally in an ohmage’s sensor data 
framework and collected for a participant outside the context of a 
particular study. This approach avoids duplicating the large volume 
of sensor data while still allowing it to be collected and analyzed 
alongside the active, study-specific data.  
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