
CS35 Data Structures and Algorithms
Practice Quiz 2, Fall 2015

1. Perform partition on the array below. You only need to perform partition once, not the
whole quickSort algorithm. Show (i) the resulting array and (ii) what is returned by the
function. Assume the right most element is your pivot. I have provided empty arrays below
so that you can show your work - you do not necessarily need to use all of them.

(NOTE: you should be equally comfortable with merge and mergeSort).

8 10 15 4 13 6 7

(i) Final array:

(ii) Return:

1



2. For your reference, I have provided part of declarations for the templated LinkedListNode

and LinkedList classes from lecture:

// linkedList.h:

#include "list.h"

template <typename T>

class LinkedListNode {

private:

T value;

LinkedListNode<T>* next;

public:

LinkedListNode(T value);

T getValue();

LinkedListNode<T>* getNext();

void setNext(LinkedListNode<T>* n);

};

// continued ------->

template <typename T>

class LinkedList : public List<T> {

private:

LinkedListNode<T>* head;

LinkedListNode<T>* tail;

int size;

public:

LinkedList();

~LinkedList();

void insertAtHead(T value);

T removeHead();

//Etc. All methods are available

LinkedList<T>* reverse();

};

#include "linkedList-inl.h"

(a) Implement the LinkedList method reverse. This method should return a pointer to
a LinkedList that contains the current object’s elements in reverse order. For exam-
ple, calling reverse on a list of elements [1,2,3] should return a pointer to a list of
elements [3,2,1]. Calling reverse on a list of elements [apple, blueberry, pecan,

key lime] should return a pointer to a list of elements [key lime, pecan, blueberry,

apple]. The current list should not be modified, and your method should be efficient.
Use correct C++ syntax (i.e., as it would appear in the linkedList-inl.h).

template <typename T>

LinkedList<T>* LinkedList<T>::reverse() {

}

(b) What is the running time of your implementation?

2



3. Consider a variation of merge sort that uses lists. That is, rather than sorting arrays, we
receive as input a set of items stored in a list. The algorithm proceeds as normal – recursively
dividing the elements in half for sorting and then merging.

Below, implement merge. You receive two lists l1, l2 that are already sorted with the
smallest values at the front. The sorted combination of the two queues needs to be stored
in result. You can use pseudocode, but your solution must obey the List interface from
lecture and lab and you should not need to utilize any other data structures.

HINT: it’s actually a pretty simple solution, so don’t panic! Think about how merge works
and replace the steps with equivalent List operations. Use pseudocode and don’t worry about
memory management.

merge(l1, l2, result):

Input: three lists; l1 and l2 are sorted. result is empty.

Return: none; result should contain the sorted combination

of l1 and l2 in ascending order.

3



Consider the following program that uses an ArrayStack which implements the standard
Stack interface backed by an ArrayList.

#include "arraystack.h"

#include<iostream>

using namespace std;

int main(){

ArrayStack<int>* stack = new ArrayStack;

stack.push(10);

stack.push(15);

stack.push(8);

stack.push(17);

cout << stack.getTop() << ", ";

cout << stack.pop() << ", ";

stack.push(-1);

// draw the memory diagram here.

while(! stack.isEmpty()){

cout << stack.pop() << ", ";

}

}

4. For the program above, write down the expected output, and the memory diagram at the
point indicated.

4


