
Ray Tracing Complex Objects Using Octrees

Josh Wolper and Jacob Carstenson
Swarthmore College

{jwolper1, jcarste1}@cs.swarthmore.edu

ABSTRACT
In this paper we outline an implementation of an octree
complete with a raytracer that parses complex objects and
renders them using octree traversal. We wrote a complete
octree class from scratch with the help of some online re-
sources and additionally wrote an object parser that incor-
porates the parser from our ray tracer project. Ultimately,
this project stands as a large extension of the midterm ray-
tracer in its goal to render more complex objects and speed
up the rendering.

Unfortunately our octree implementation, though seem-
ingly thorough and complete, is buggy. It works and gives
significant speedups but is finicky and sometimes renders
incomplete images. Thus only our object parser remains as
a fully functioning element, it runs extremely slowly (high-
lighting the need for our octree implementation). We be-
lieve our octree class itself to be almost completely correct
and useable, however our traversal algorithms/methods are
likely incorrect somewhere as this seems to be where shapes
are being dropped and not rendered. In the end it came
down to time but we could not figure out how to fix the oc-
tree completely despite endless debugging. Despite this, we
will go into extreme detail outlining the methods and ideas
behind our traversal algorithms as we believe they only falter
in our implementation.

1. INTRODUCTION
Ray tracing has been around since its proposal by Arthur

Appel in 1968 [1] and since has become one of the most com-
mon ways to render images. In combination with the clas-
sic Blinn-Phong model of lighting we created a small CPU
based ray tracer for our midterm project. As a final project
for this course we decided to pursue a large extension of this
tracer by adding more complex concepts and more intensive
computations. This entails adding object parsing, complex
objects, and data structures such as octrees to speed up hit-
Times.

Octrees are data structures that divide 3D space into a

Course paper for Swarthmore College course CS 40: Computer Graphics
Copyright the authors..

tree- each node having exactly 8 children save for the leaf
nodes. This way of organizing space will allow our ray tracer
to run more quickly as we may divide each object in the
scene into ”nodes” and instead of linearly searching for hits
on objects we may instead narrow searches down to a few
”pierced” nodes. Ideally a ray will enter one octree root,
determine which child it hit, then which child of that child
it hit, and so on. The higher depth to which we define our
tree, the more nodes there will be and thus the program will
theoretically run faster and faster as depth increases.

The object parser incorporates the parser from our old ray
tracer and adds some commands to allow object file uploads.
These object files define vertices and triangle fragments that
our ray tracer may then render as a complete, complex ob-
ject.

The primary challenges we faced were designing the octree
itself and implementing an efficient way to determine ray-
box intersections for the tracer. Despite having all the code
necessary, our octree does not work perfectly but does create
significant speedups. [2]

2. RELATED WORK
Due to the abstract and complex nature of 3D data struc-

tures, we needed to do some research into implementations
of both the structure itself and also algorithms for traversal
using a ray tracer. A student at the University of Clemson,
Brandon Pelfrey has a multitude of free graphics resources,
including some related to octrees in particular. His in depth
discussion of what an octree is and how it functions helped
us to understand the basic ideas behind the implementation
and allowed us to formulate our own solution [2]. Addition-
ally, he implemented his own basic octree that we used as a
model for our structure implementation [3]. Unfortunately,
his structure is extremely basic when compared with what
we wished to do with ours as his octree is coded to store
”point” data types and thus the methods relating to node
intersections and inserting data were far more simple than
what we needed our octree to do as we added entire shapes
to our octree and determining whether a bounding box for
a shape is intersecting with a node is far more complex than
simply determining whether a point is within a node. De-
spite this, the basic structure of his octree proved extremely
useful in creating a skeleton for our implementation, espe-
cially concering what data members we needed to create and
what methods we needed to implement.

While the structure of the tree itself was difficult to vi-
sualize, we were able to grasp it with relative ease. This
was not the case with traversal algorithms. There are many



methods for traversing 3D space in an efficent way, but the
main idea for connecting our octree and our ray tracer was to
determine which leaf nodes a ray pierces as it goes through
the octree. Though seemingly a simple task, upon research
we discovered that the most efficient way was to use com-
plex parametric algorithms to compute face intersections.
This is all outlined in our most important resource, ”An
Efficient Parametric Algorithm for Octree Traversal”, an ar-
ticle from the Journal of WSCG written by three Spanish
researchers in 2000 [4]. This paper outlines numerous equa-
tions we implemented and connected to our ray tracer in
order to calculate face intersections, ray exits, and second
node intersections. The combination of all this math and
pseudo code allowed us to ultimately create what we believe
to be a nearly fully functioning octree, and it would have
been impossible without these related works.

3. DESIGN
For this project we are using a previously written CPU

based ray tracer and as such will not go into depth on its
creation; instead, we will focus on our octree design and how
it interacts with the tracer. For our design we decided to
skip creating an octree node class, but instead to just create
an octree class. This is due to the nature of octrees, each
octree is in itself a ”node” as it will point to its children and
any data it may store. Thus, instead of having an octree
of nodes we will design our tree as an octree of octrees. Of
course, the leaves will be octrees that are simply root nodes.

Our private data members include a list of child pointers,
a shape pointer, a member for the origin of the sector in
space, and a member to store half the dimension of the sector
(half the width or height since they will be cubes). We need
some efficient methods to make this data structure effective-
the first being an insert method which will allow us to insert
data into the tree.

There are three potential cases that may occur when call-
ing insert: the first is that we hit an interior node. We are
designing our octree to have no ”data” associated with inte-
rior nodes, but instead only with our leaf nodes. Thus if we
hit an interior node we must follow its child pointers until
we find the node we want to insert into based on its origin
and whatever data we have (in our case a triangle, so we will
look at triangle coordinates and insert triangles into nodes
based on comparisons with the node bound box compared
with the triangle bound box). The second case is the node
is a leaf and has not filled up its data, and thus we add the
triangle to the list of triangle pointers. Third case however,
is that we hit a leaf node and it already has its max amount
of data. This would entail adding a level of depth to the tree
(inserting a new tree to each of the this node’s children) and
taking all of its data and distributing it within its childrens’
octrees. This is done using a function that takes a bound-
ing box (taken from each shape) and tells which children
are contained within this box. We then add the shape to
all of these children. Bound boxes are defined by lower left
corner and upper right corner and are found in various ways
depending on shape- spheres are the simplest shape to find
a bound box for as the min is simply the center point - a
vector of the radius, and the max is the same but with the
radius vector added. Every shape based on a plane is more
complex, for these we took the minimum x value, minimum
y value, minimum z value and put these in as our min point.
And similarly we used the max x, max y, and max z for our

max point. These bounding boxes allow us to complete our
getChildrenInsideBox function which is needed two times in
our insert function.

Next we added our method to determine which child a
given point is in (getOctant). We did this by assigning the
children in a systematic way suggested by our resources.
Having the children ordered by a pattern allows us to know
where/what to index when getting to later methods we im-
plement. We used the following pattern where a ”-” means
less than the origin in that dimension and vice versa.

Index 0 1 2 3 4 5 6 7
x - - - - + + + +
y - - + + - - + +
z - + - + - + - +

Thus our function becomes quite simple as it can be achieved
through nested if statements with 8 potential cases- one for
each child. Furthermore, each child can be indexed by a
3-bit binary number, with each bit signifying x, y, and z
relative positions (+ or - the origin of the octant). This
allows us to use bitwise operations to check each axis inde-
pendently. These bitwise operations are used in the input
function when creating the 8 new child octrees. We use them
to determine which child’s number (0-7) gets which octanct,
following the table above.

Our final and perhaps most important method of the oc-
tree we need to implement is one to determine which child of
an octree was hit by the ray. We will do this by comparing
where our ray is passing through with the origins of the top
level of nodes, then with the next level down until we reach
a leaf. Then we know that we have our deepest node once
we’ve followed this path through the tree. It is also possible
that multiple nodes will be struck by a ray. Testing for hits
is extremely complicated and uses some complex parametric
algorithms [4].

The final aspect of the Octree implementation is the ray-
octree intersection that needs to be calculated in order to
know which leaf nodes are pierced by a ray. This is done by
taking the ray parametric function:

rx(t) = px + tdx

ry(t) = py + tdy

rz(t) = pz + tdz

We know that an intersection has occured if there exists one
t that satisfies:

x0(o) ≤ rx(t) < x1(o)

y0(o) ≤ ry(t) < y1(o)

z0(o) ≤ rz(t) < z1(o)

where (x0, y0, z0) and (x1, y1, z1) are the bounding box for
any given octree node o. Knowing this, we can calculate the
times for when the specific ray cross each the min and max
values for each axis in the octree using the inverse of the
first equation above:

txi(o, r) =
xi(o)− px

dx

tyi(o, r) =
yi(o)− py

dy



tzi(o, r) =
zi(o)− pz

dz

Where p is the origin of ray r, and d is the direction vector.
This is done for i values 0 and 1 to give six independent times
used in the ray-octree intersection algorithm. Now that we
have all of the t0 and t1 values. To find the first time the
ray hits the octree and the time when it exits, you take the
max and min of respectively of each component time value:

tmin(o, r) = max(tx0(o, r), ty0(o, r), tz0(o, r))

tmax(o, r) = min(tx1(o, r), ty1(o, r), tz1(o, r))

Now we have sufficient information to know weather or not
a ray interesects a given octree by checking the condition:

tmin(o, r) < tmax(o, r)

If this is true, interesection occurs. Another useful piece of
information to remove redundant calculations are the time
values of when the ray crosses the median of each axis called
tm. We find this using the following equation:

txm(o, r) =
tx0(o, r) + tx1(o, r)

2

tym(o, r) =
ty0(o, r) + ty1(o, r)

2

tzm(o, r) =
tz0(o, r) + tz1(o, r)

2

Now we have all the information we need to find the pierced
children of an octree. The first thing to do is find the first
node intersected by a ray. The first thing to do is take tmin

and figure out which compenent of t0 it equals. Then use
the following table to determine the entry plane:

Maximum Entry Plane
tx0 YZ
ty0 XZ
tz0 XY

Once you have determined the entry plane, there are two
conditional statments that determine the state of two bits
in a 3 bit number that decides which child octant is the first
pierced node. Use the following table:

Entry Plane Conditions Bit
XY txm < tz0 0

tym < tz0 1
XZ tym < ty0 0

tzm < ty0 2
YZ tym < tx0 1

tzm < tx0 2

The next part of the algorithm is finding the next pierced
nodes which can be found by finding the exit node of the
current pierced node. This is done by finding tmax of the
current child node. Similar to finding the entry plane above,
the exit plane is determined by which component came out
as the minimum value, with x maping to the YZ plane, y
mapping to the XZ plane, and z mapping to the XY plane.
Now, use the following table to find which is the next node
pierced by the ray by finding which node you are currently
on and what the exit plane is:

Current YZ XZ XY
0 4 2 1
1 5 3 END
2 6 END 3
3 7 END END
4 END 6 5
5 END 7 END
6 END END 7
7 END END END

This is done for all of the visited nodes until the end is
reached which signifies the ray exiting the octree. Now all
of these pierced nodes will be checked for their hit times to
find which ones were hit, and should be drawn.

This implementation works under the assuption that ev-
ery component of the direction vector is positive. If a nega-
tive component is encountered the ray needs to be redifined
to r′ with the following equations:

d′e = −de

p′e = pe − 2(pe − oe)

with o being the origin of the octree. This is performed for
all components e ∈ x, y, z where

de < 0

This effectively reflects the ray across the tree on the given
axis, requiring a reordering of the child node numbers. This
function is used for a given child node i to convert it to the
actual child node referenced:

f(i) = i⊕ a

where a can be found using:

a = 4sx + 2sy + sz

where se is 1 if de < 0 and 0 otherwise. This information on
the ray-octree traversal was adapted from the Revelles et.
al. paper[4]

Finally, we also decided to add an implementation of a
parser for .obj files to make testing of the octree easier. We
did not implement all aspects and functionality of .obj files,
just vertex and triangle definitions, marked by the v and
f commands respectively. A dictionary is kept of all the
vertices with indexes starting at 1 used as the keys. The tri-
angles are defined using these indexes as references to each
point of the triangle. Since parsing any file format is similar
in that it is a line by line process, many snippets of code
are borrowed from Andrew Danner’s input parser from the
raytraycing lab, especially parseFile and parseLine, which
have the anlogs of parseObj and parseObjLine. Further-
more, parser.h is included in the parser’s implementation
and parseFloat and parseInt are used in the .obj parser ex-
tensively.

4. IMPLEMENTATION
We used Qt and the Qtcreator IDE to implement all of

our code. Nearly all of our code is either from our midterm
project or originally written by us for this project. However,
we did use pseudo code for a travesal algorithm from a paper
[4] and all object files used are courtesy of public domain
resources on the internet [5] [6].

For the object parser we implemented it in much the same
way that the parser itself worked from our raytracer. We



designed it as a data structure so that we could simply add
a new ”cmd” to the parser in our raytracer that would be
triggered by the command ”obj”and creates an object parser
”object” and then creates a vector of triangle objects while
reading through the object file. Then that list of triangles
is entered into the object list in our ray tracer.

Our project runs by simply running ./makescene <input
.txt file>. The txt file is in the style of the txt file from the
midterm raytacer but includes an extra command, ”obj” to
add a .obj file for our parser. This command can be entered
in the file as obj bunny.obj for example. We also added a
command, ”oct” that should be included in the input file if
the user wants to use octrees to render.

5. EVALUATION
The project was both a success and a failure: we managed

to implement a fully functioning object parser that allowed
us to render complex objects in our raytracer through the
use of .obj files. And while our octree implementation did
not work perfectly in the end, we feel it is extraordinarily
close to being a complete implementation and we learned
a lot from designing it and working through the equations
and algorithms necessary to make it efficient and effective.
Normally we would have gauged the success by operational
speed ups and how much faster the octree could make our ray
tracer. Unfortunately, due to the unwieldy and intricate na-
ture of the structure, we found it nearly impossible to debug
and discover the issues buried deep within it. Fortunately
we at least had the parser as a shiny new feature of our ray
tracer and the octree does speed it up considerably, but it
does not always render complete images unfortunately.

Our octree does appear to work but it has some issues
with using small values for maxData and dropping shapes
in general. It definitely speeds up rendering by a huge de-
gree, but it commonly drops shapes from the scene which
is a pretty glaring issue. If we had to determine the source
of our errors in the octree, we believe we could narrow it
down to either the traversal algorithm we used or/and the
insert function implementation. While debugging we discov-
ered that for some reason we were getting negative t values
where we shouldn’t have been getting negatives due to the
assumptions of our parametric algorithms, but we could not
find the source of this as it seemed to be nearly random. As
for the insert function we tested it thoroughly and believe
it to be working, yet strange problems begin to occur if we
set the max number of shapes in a node to lower numbers
and we believe this could have caused problems when there
were shapes very close together and thus going deeper and
deeper down into further octree root nodes. However, after
countless hours debugging we decided to leave it alone. So
in its current state it renders faster with octrees but they
are usually incomplete.

The parser is harder to determine the success of as it was
very difficult to test since most objects took hours to render
so we could only test so many times. We spent a lot of time
messing with coordinates trying to make a test scene look
good, but this was again difficult as it took hours at a time
to render between tries. It would have been great to get the
octree working as this would allow us to get much better
images from our parser.

6. CONCLUSION

Overall the project was not a complete failure. We created
what we believe to be an almost fully functional octree which
in itself is an extraordinarily complicated structure to both
create and to traverse. In addition we did end with one
visible productâĂŞ our object parser.

We learned a lot from this trial and error, both about nav-
igating 3D space and about designing a new data structure
basically from scratch. A tremendous amount of thinking
goes into simply thinking about organizing 3D space, let
alone traversing it efficiently and this could easily be con-
sidered one of the biggest gains of the project, especially
considering we were ultimately unable to get it to work.

This project should stand testament to the unfortunate
reality that creating new things is super hard; not only is it
hard starting a data structure from scratch, but even harder
to do is start a relatively undocumented data structure from
scratch is far worse. Finding documentation on octrees and
how to traverse them effectively was pretty difficult, which
was shocking as we thought that it would likely be a com-
monly used structure. As it turns out it appears that octrees
are a somewhat outdated structure that has been replaced
both by other similar structures like KD-Trees as well as
parallel programming artifacts like CUDA.

Ultimately, if we were to continue working on our project
in its current state we’d love to just continue debugging until
we discovered what the issues are. Perhaps a misuse of a
vital equation, or perhaps a simple missing line of code. We
have no idea, but we wanted to see our baby work and that
would easily be the goal for future work. As an even further
extension we wished to test our octree on reflections and
shadows as well, as both of those features required a search
of the object list adding the octree would make it much
faster (especially reflections as they take forever). Perhaps
we could even try adding the Stanford bunny to a mirror
room and see it in all its infinitely reflected glory.

7. REFERENCES
[1] A. Appel. Some techniques for shading machine

renderings of solids. Proceeding AFIPS ’68 (Spring)
Proceedings of the April 30–May 2, 1968, spring joint
computer conference, 1968.

[2] Brandon Pelfrey. Coding a Simple Octree.
http://www.brandonpelfrey.com/blog/coding-a-simple-
octree/.

[3] Brandon Pelfrey. SimpleOctree.
https://github.com/brandonpelfrey/SimpleOctree/blob/master/Octree.h.

[4] J. Revelles and C. Urena and M. Lastra. An Efficient
Parametric Algorithm for Octree Traversal. In Journal
of WSCG, pages 212–219, 2000.

[5] Morgan McGuire. Unit-Volume Cube.
http://graphics.cs.williams.edu/data.

[6] Unknown. Stanford Bunny OBJ.
http://graphics.stanford.edu/ md-
fisher/Data/Meshes/bunny.obj.


