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1 Introduction

The problem we have chosen to tackle is the problem of detecting whether a face is in in an image.
Originally we wanted to have pictures of varying dimensions and have the system give a bounding
box around each face in the image, similar to what many modern cameras use to detect faces. This
proved to be too hard of a problem so we had to modify our problem to detecting whether a 20 by
20 pixel image contains a face or not.

In order to tackle this problem, the machine learning technique we chose to use is an artificial
neural network, created by the conx python module, part of the Pyrobotics project. Artificial
neural networks are a generalized supervised learning approach inspired by biological processes
in the brain [Mit97]. This network contains artificial neurons, organized into three layers (input,
hidden, output), that have a series of inputs that are linearly combined with an associated set of
weights to produce its net input. The net input is passed into an activation function that produces
this neuron’s activation which is passed on to the inputs of the next layer. The activation function
used in our neural network is a sigmoid function, which is a differentiable function that maps very
negative numbers to 0 and very positive numbers to one and numbers that are exactly 0 are mapped
to 0.5. The activations of the output layer nodes represent the answer the neural net gives.

This network is trained with input taken from our obtained dataset along with a set of target values
we want the system to output, in this case the output should be either 1 for the image is a face
or 0 for images without a face. However, adding a tolerance allows the system to categorize with
more leniency: for example, a tolerance of 0.2 allows images with activation from 0.0 to 0.2 to be
categorized as not faces, and image with activation from 0.8 to 1.0 to be categorized as faces.

2 Details

2.1 Dataset and Preprocessing

We constructed our dataset from the Face Detection Data Set and Benchmark (FDDB)[JL10], a
set of 2845 images of different dimensions taken from news photographs. The set comes with files
that define annotations locating a bounding ellipse for each face in each of the images. See Figure
1(a) for an example such annotation.
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Figure 1: The dataset preprocessing procedure: (1) Choose images from the original dataset that
contain only one face (2) Extract a 20x20 square containing a face and a 20x20 square not containing
a face (3) Separate into the RGB channels to input into the neural net.

From a subset of these images, we cropped to squares inside (see Figure 1(b)) and outside (see
Figure 1(d) of these ellipses, resulting of a dataset of 1358 square images, 679 of which contain
faces and 679 of which do not contain faces. These squares were then resized to 20 by 20 pixel
images, decreasing the resolution significantly.

We converted all the images to the PPM (Portable Pixmap) format, a lossless image format which
contains an array of bytes, each a decimal value between 0 and 255 that represent the individual
red, green, and blue values of each pixel. See Figures 1(c) and 1(e) for examples of the original
images separated into the three color channels. We used the Python Imaging Library (PIL) for the
cropping and converting of each image from the FDDB database.
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These PPM images are imported to the Pyrobot vision module that stores all of the RGB values
and normalizes the values between 0 and 1. The values are then written in ASCII to an inputs.dat
file where each line of the file contains every RGB value of a 20 by 20 image separated by spaces.
Each line of the file will then represent the 1200 input nodes for the neural network. Since we had
1358 images, the inputs.dat file had 1358 lines.

Another file corresponding to the inputs.dat file is the targets.dat file. Each image contained within
the inputs.dat file is mapped to an integer value representing whether the image is a face (1) or
not a face (0). This file represents what we want the neural network to produce when presented
with these images.

2.2 Neural Network

The software defining the artificial neural network was written in python and obtained from the
Python Robotics programming environment.

We used a network with 1200 input nodes (400 pixels, 3 color values for each pixel), a single hidden
layer with 200 hidden nodes, and 1 output node.

Since the neural net recieves each image as RGB seperated values, we chose to grab every third
value and visualize it as a 20 by 20 array. This way when showing the performance of the neural
net, three images of the seperated RGB values of the image are depicted allong with the hidden
and output layer activations

We used 80%, or 1087 images, of the data as the training data, and 20%, or 271 images, as the test
data. The data was split randomly into the two sets for each run.

The training parameters were as following:

Learning rate 0.05
Momentum 0.0
Report rate 1
Tolerance 0.35

We trained for one epoch at a time and then evaluated on the test set, stopping when performance
decreased on the test set, to prevent over-training. This would usually take between 5 and 7 epochs.

3 Results

The scores on both the training set and the test set are shown in Figure 2, in terms of the percent
labeled correctly as faces or not faces.

The neural net reached an accuracy of 87.8% correctly categorized images of the test set.

There were several interesting cases among the images that were labeled incorrectly which give
light on the pitfalls of our trained neural network.
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Figure 2: Performance graph

1. Rotated faces. The neural net failed to categorize some faces where the angle of rotation was
significant. See Figure 3(a) for an example. This could be because most of the training set is
unrotated.

2. Cut off faces. This is a problem that came about from our preprocessing which took
cropped squares acording to the face annotation supplied from the FDDB. Some pictures,
such as Figure 3(b) did not include the mouth and/or chin of the subject. Some of these
images were incorrectly categorized as not faces.

3. Clothing/obstructions. Faces that were obstructed by sunglasses, hats, or facial hair, such
as Figure 3(c) were often categorized incorrectly.

4. Skin tone. Most of the faces in the FDDB dataset were light-skinned. Dark-skinned people,
such as 3(d) were often categorized incorrectly. This could be solved by finding a more diverse
dataset.

5. Open mouth. Most of the subjects in the training set had their mouths closed. Faces with
mouths open, such as 3(e) were often categorized incorrectly. This could be because while a
closed mouth is dark on the face, an open mouth showing teeth is fairly white.

6. Lighting issues. There was some bad data, such as in Figure 3(f), where the faces were too
blurry or badly lighted to be identified.

The photos that did not include faces that were incorrectly categorized as being faces were less
easy to analyze for common features. However, we show some examples in Figure 1.
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(a) Rotated face. Activation 0.55 (b) Cut off face. Activation 0.52

(c) Face obstruction. Activation 0.40 (d) Skin tone. Activation 0.14

(e) Open mouth. Activation 0.21 (f) Lighting issues. Activation 0.45

Figure 3: Examples of images containing faces that were incorrectly categorized as not containing
faces. Activation shows the strength of the neural net’s confidence. Because our tolerance was
0.35, activation scores between 0.0 and 0.35 were categorized as ’not face’, activations between
0.65 and 1.0 were categorized as ’face’, and activations between 0.36 and 0.64 were categorized as
’unknown’.

(a) Activation 0.79 (b) Activation 0.83

(c) Activation 0.43 (d) Activation 0.70

Figure 4: Examples of images not containing faces that were incorrectly categorized as faces.
1

4 Conclusions and Future Work

Our simple, 3-layer neural network performed well overall on the data set. Potential changes to
our method in the future could include adjusting the input data, and adjusting our neural net.
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With regards to the neural net, we could explore using multiple hidden layers, or creating different
organizations of input, such as inputting rows or columns as sections.

While we chose to have our input data be in the simplest possible form, it could be interesting to
try using different formats and color models for our input data. The Hue Saturation Value (HSV)
color model is often used for computer vision problems instead of RGB because it isolates the color
information (hue) from the intensity information.

Also, instead of using raw pixel data as our inputs, it could be beneficial to extract feature vectors
for each pixel that contain more information about that pixel in its local context.

We could also explore using different datasets. Many of the problems in incorrect categorizations
resulted from the dataset being non-representative. Having a dataset that is more diverse and does
not contain any badly cropped faces could solve these issues.
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