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1. Introduction  
A conventional hash table exploits the property of an array, or an array-like data structure that 

allows constant time lookup when given an index to the memory location. This is done by 

assigning a relatively unique index to each of the elements stored in the data structure, and later 

using those indexes to access elements. A well-designed and implemented hash table supports 

near-constant time search and other regular operations, and makes it an ideal choice for 

implementing dictionary-like data structures or associative arrays, among many others.  

 However, such performance comes with a catch: as the elements in the hash table gets 

clustered, that is, as the elements’ indexes become less and less unique, the performance of a 

hash table quickly degenerates. A common solution for maintaining a relatively well-distributed 

hash table without heavy clustering has been to resize the hash table. By increasing the total 

number of indexes available, the elements in the hash table can be assigned much more unique 

indexes and the clustering can be undone. Not only well accepted, this resizing of the hash table 

has also been an unavoidable solution to many of the hash table implementations when dealing 

with a dynamically increasing set of values.  

 But for many of the existing hash table algorithms, this process of resizing is very 

expensive and time consuming. Often times, indexes of every present element have to be 

recalculated, or “rehashed,” and copied over to a newly created table during a resizing process. 
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As the need to resize arises at a relatively unpredictable moment, the overall performance of hash 

table becomes unpredictable as well. For example, an insert operation could take constant time at 

one moment but linear time in the next, as the table may go through the resizing process before it 

inserts. This makes a hash table a bad choice for backing up real-time applications that cannot 

afford to pause and resize. 

 This paper presents a new hash table algorithm that utilizes separate chaining with a form 

of binary search tree. Ultimately, the presented algorithm suggests a new way for designing hash 

tables, with a potential for allowing rapid resizing by avoiding the rehashing process.  

 

 

2. Hash Table and Its Terminology 
In computer systems, an array is a continuation of memory slots with each of the slots containing 

some value. And when given an index of an array, retrieving the value from that index of the 

array can be done in constant time. As mentioned in the introduction, a hash table utilizes this 

aspect of an array. At the core of a hash table is an array of “buckets” with each array slot 

representing a bucket (In the figure above, there are 16 buckets in all, with each bucket’s array  

 

  
Figure 1, A Typical Hash Table Layout 

Taken from https://en.wikipedia.org/wiki/Hash_table 
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index represented with a number in between 0 and 15). When a hash table is given a key for the 

insert operation to store new data, a “hash function” translates the key into one of the index 

numbers for buckets. Then the given key and some values related to the key are stored in the 

bucket designated by the calculated index.  

A problem arises, however, when more than one key gets hashed into the same bucket, or 

as commonly called, “collide.” A common remedy for collisions is “separate chaining.” With 

separate chaining, each bucket is represented as a separate data structure, allowing it to represent 

more than one key and value pair. Of course this solution comes with a cost; the more elements 

represented in one bucket, the more work needed to locate the target element after hashing into a 

bucket. As the number of elements represented in a bucket increases, the runtime complexity of 

regular operations, such as lookup, starts to digress from constant time, resembling more of the 

chained data structure’s complexity of respective operation.  

So essentially, the strength of a hash table that grants near-constant time operations 

comes from the table’s ability to maintain each bucket as light as possible. In part, this is 

achieved through a well-implemented hash function that evenly distributes the elements 

throughout the buckets. But more importantly, this is achieved through allocating more buckets 

to the hash table so there would be more room for unique indexes. This process of dynamically 

allocating more buckets to a given hash table is called “resizing.” In many hash table algorithms, 

this resizing process takes place when the number of elements to the number of buckets ratio, 

which is called the “load factor,” exceeds a certain threshold.  

 However, the resizing process is a costly one as mentioned above, and it may be 

worthwhile to note now why it is so. When calculating bucket indexes for each element, many of 

the hash functions include a modular operation that uses the number of buckets. So when the 

number of buckets changes during a resizing process, the previously calculated indexes are 

incorrect in the newly expanded hash table. Therefore, the bucket indexes of all existing 

elements and newly added elements have to be recalculated (rehashed) and copied over to the 

correct buckets in the newly created hash table. This is a linear time operation in relation to the 

number of elements, as the process has to manipulate every element present in the hash table.   
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 The new hash table algorithm that will be presented in the following pages avoids the 

rehashing process entirely. This is done through separate chaining the hash table with a special 

form of a binary search tree.  

 

 

3. Binary Search Trees 
3.1 Conventional Binary Search Tree  
Before describing the binary search tree that will be chained to the currently presented hash 

table, it would be useful to layout a more conventional binary search tree and consider its 

complexity. This section will not go over in depth the algorithm for a conventional binary search 

tree and its various operations. Rather, understanding the general shape of a binary search tree 

and its search operation’s complexity would be sufficient for the scope of the current discourse. 

From this section on, the complexity will be formally discussed in big O notation.   

 An element in a binary tree has two children often denoted as left and right children. In a 

binary search tree, every element stores a unique key (and optional associated values) where the 

key of any element is greater than all keys stored in the left sub-tree, and smaller than all keys 

stored in the right sub-tree. For searching a specific key in a binary search tree, the operation 

starts from the root of the tree, comparing the root’s key to the key that is being searched. If the 

root’s key is equal to the key that is being searched, the operation returns true, designating that 

the key is found. If the root’s key is smaller than the one that is being searched, the operation 

proceeds to search in the right sub-tree, and if the root’s key is bigger than the one that is being 

searched, the operation proceeds to the left sub-tree (in these two cases, the recursive procedure 

takes place in the following step using the root of the sub-tree). If the tree finishes before the 

wanted key is found, the operation determines that the key does not exist in the current binary 

search tree and returns false.   

Essentially, assuming the size of the right sub-tree and the left sub-tree are relatively 

similar, each step of the search operation roughly halves the scope of search. The complexity of 

this operation is commonly known to be O(log n) where n is the number of elements in the tree. 

This can be shown with a proof by strong induction.  

 



	
   5	
  

 

 
 

Figure 2, Binary Search Tree Layout 

  

 Let BS(n) be the total amount of time needed for a binary search and X be some constant 

representing the amount of time needed to run trivial steps of the algorithm. The current claim is 

that BS(n) ≤ X * log n + BS(1). The base case for the strong induction is established when n = 1: 

  

X * log 1 + BS(1) = X * 0 + BS(1) = BS(1) 

 

Then the inductive hypothesis would be for all k such that k < n,  

 

BS(k) ≤ X * log k + BS(1) 

 

 Now, notice that when n > 1, there are three possibilities that need to be considered: the 

key being searched for is 1) equal to the current root’s key, 2) less than the current root’s key, 3) 

greater than the current root’s key. In the first case where the key being searched for is equal to 

the current root’s key, the only steps required are to return true and confirm that the key was 

found. These steps are trivial and can be simply represented as X. That is,  

 

BS(n) ≤ X ≤ X * log n + BS(1) 

 

For the latter two cases, the steps are slightly more involved. When the operation fails to locate 

the desired key in the current’s root, it will have to continue searching in the left or right sub-tree 
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that is about a half the size of the current tree. Therefore, in addition to some trivial steps, X, the 

operation will have to perform a search on half of the current root’s children. This can be 

represented as, 

 

BS(n) ≤ X + BS(1/2 * n) 

 

Note, (1/2 * n) ≤ n. By inductive hypothesis, the above representations can be reduced to, 

 

BS(n) ≤ X + (X * log (1/2 * n) + BS(1)) 

≤ X + X * log (1/2 * n) – X + BS(1) 

≤ X * log n + BS(1) 

 

 With this above proof that BS(n) ≤ X * log n + BS(1), that the binary search takes O(log 

n) complexity is clear. While not discussed in this section, the complexity for other common 

operations on a binary search tree, such as insert and remove key, takes O(log n) complexity as 

well for essentially the same argument presented above. This is the case as these operations 

usually “search” for the place where a key can be inserted or removed, and take some trivial 

amounts of work to actually modify the tree.  

  

3.2 Partition-Driven Binary Search Tree  
Partition-driven binary search tree (PDBST) is similar to a regular binary search tree in that each 

element in the tree has two children, and maintains a certain order. However, a PDBST has a 

predetermined and unchangeable capacity that is given when the tree is created, and cannot 

contain more number of elements than the capacity. When determining whether a given child 

should be in the left or right sub-tree, PDBST, instead of using the parent key’s value, uses the 

values that “partition” the capacity of the tree into some number of pieces, where “some number” 

is determined by 2k, with k being the level of an element within the tree.  

 Consider a PDBST with the capacity of 100. The first element inserted will be the root of 

the tree (also note that the level of the root is 0). When inserting the second element, a 

conventional binary search tree would check if the new element’s key is greater or smaller than 

the current root. However, PDBST will check if the new element’s key is greater or smaller than 
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Figure 3, PDBST with Range 0 to 100 (partition values shown in dotted lines) 

 

the value 50, which partitions the current PDBST’s capacity into 21 parts (note here that keys are 

assumed to be numeric values). If the new key is greater than 50, it will be inserted as the right 

child of the current root, and if it is smaller than 50, it will be inserted as the left child of the 

current root.  

 Imagine now that both the left and right children of the root have been filled, and the next 

value is to be inserted. Much like a conventional binary search tree, PDBST will first search for 

the place where the value should be inserted. It checks to see if the newly added element’s key is 

greater or smaller than 50. If it is greater than 50, it moves on to the right child, and it is smaller, 

to the left child. Let’s say, for example, the new key is smaller than 50. Instead of comparing the 

new key to the left child’s key, PDBST compares the new key to the value 25 as the multiples of 

25 partitions the capacity into 22  = 4 parts. If the new key is smaller than 25, it will be inserted 

as the left child of the level 1 left child, and if greater than 25, it will be inserted as the right child 

of the level 1 left child.  

 Removing an element in a PDBST takes caution as not to disconnect the tree. The only 

elements that can be removed safely are the elements without any children. Therefore, to remove 

an element in a PDBST, the element that is to be removed should be swapped with one of its 

children that have no child of its own and then removed (children here can be one of the two 

direct children, or any other children down the tree). Notice that this remove operation is done 

preserving the property of PDBST. 
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 Searching for a key in PDBST will essentially take the same form of operation as the one 

in a conventional binary search tree, except that it will be relying on the partitioning values 

instead of the keys of the roots when deciding whether to proceed left or right. The concept of 

halving the number of elements to be searched at each level remains unchanged. Therefore, the 

complexity for the search operation, as well as other regular operations described above, should 

be O(log n) by the same argument presented for the binary search tree’s complexity. 

 

 

4. Hash Table with Separate Chaining to PDBST 

As stated in the introduction, the driving motivation for the current discourse was to present a 

hash table algorithm that avoids the rehashing process entirely during a resizing operation. While 

the hash table presented here is similar in structure with other chained hash tables, it answers to 

this motivation by taking a full advantage of the PDBST’s properties.  

 

4.1 The Table’s Layout and the Hash Function  
There is no doubt that if a hash function is “injective,” that is, if it maps every input to a 

unique bucket in the hash table, it is perfect. Such a function would be able to directly locate any 

entries without additional searching, giving the constant time complexity for all its regular 

operations. However, to support such a function would require preemptively allocating bucket 

spaces for every possible input even when there is no guarantee that the most of the allocated 

buckets will be used. So unless the number of every possible input is considerably small or there 

is a guarantee that most of the allocated buckets will be used, supporting a perfect hash table is 

highly impractical. Of course, this is true for the currently presented algorithm as well.  

But while allocating buckets for every possible input is impractical and bucket collisions 

unavoidable, it is possible to exploit the injective nature of a perfect hash function in order to 

avoid rehashing. The current algorithm starts by finding out the upper bound for the number of 

all possible inputs. For example, if the inputs were expected to be 5 alphabet characters, this 

would be 265. If the upper bound cannot be clearly defined, however, the value for the upper 

bound should be set to some arbitrarily large number that is guaranteed to be greater than all 

possible inputs. Larger bound will not degrade the performance of the current hash table 
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algorithm. Also, in the current algorithm, the hash table will not be able to contain more 

elements than what the upper bound dictates due to its close pairing with its chained data 

structure, PDBST. Therefore, it is absolutely critical that the upper bound set at the beginning is 

large enough to contain the number of all possible elements.  

 As a chained hash table, each bucket of the current hash table is represented as a PDBST. 

Now, recall that PDBST has a range; this is crucial to the current hash table algorithm. The range 

of PDBST is determined by the number of buckets present (hash table’s capacity) and by the 

upper bound in such a way that the number of buckets partitions the estimated number of all 

possible inputs. For example, if the hash table’s current capacity is 10 and there are 1000 

possible inputs, the range of the first bucket should be 1 to 100, second 101 to 200, and so on, 

ending with the last bucket that ranges from 901 to 1000. When an input is hashed, unlike in a 

regular hash table, the input is hashed to a unique integer that is less than the upper bound given 

in the previous step, and then put into the PDBST whose range contains the hashed value (notice 

that this works essentially the same way as a perfect hash function with the injection between all 

possible inputs and unique integers, except no physical memory space is allocated to match the 

injection).  

It should be apparent that the methods and complexity for the regular operations, such as 

search, insert, and remove follows closely with those of a regular hash table chained with binary 

search trees. For example, a search process in the currently presented hash table would take some 

constant time for hashing the entry, and then traveling the PDBST in the bucket if necessary. So 

long as each bucket is not concentrated with elements, the operation takes near constant time, 

and logarithmic time otherwise. However, this is not the case for the resizing operation of the 

hash table.   

 

4.2 The Resizing Algorithm 
Note again that to resize the hash table is to increase the number of buckets that are present in the 

table. With the current hash table algorithm, this can be done simply by dividing in half each 

PDBST representing the buckets. A property of PDBST with a range of x to y is that all elements 

to the left of the root is another PDBST with the range of x to (x + y)/2 and all elements to the 

right of the root is PDBST with the range of (x + y)/2 to y. Then, to increase the number of 

buckets to twice the current number, for each PDBST representing a bucket, the left sub-tree and 
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right sub-tree will each represent a bucket in the resized tree, and the root of the main tree will be 

inserted back into either the left or the right sub-tree.  

This method maintains all the properties of the hash table prior to resizing, and can be 

done without any rehashing process. The complexity of this operation takes only logarithmic 

time at worst, and constant time at best in relation to the number of elements present in the hash 

table as the only non-trivial operation is the insertion of the root of PDBST back into one of its 

sub-trees. But this operation still takes linear time in relation to the number of bucket, as every 

bucket has to be checked to see if it’s empty, and if not, be divided into two sub-trees.  

 

 

5. Further Issues and Potentials 
The current research started with the ultimate goal of achieving dynamic resizing of a 

conventional hash table with some slight modifications. The presented algorithm tried to tackle 

this goal by entirely avoiding the rehashing process during resizing with a separate chaining to 

PDBST whose properties are exploitable in the greater scope of the hash table. How much was 

gained, and how much was lost in this effort to avoid the rehashing process? 

 The obvious strength of the presented algorithm is the fact that it does not need to rehash 

during the resizing process. As the hash function gets more complicated and involved, this 

becomes even greater strength. Also, because most of the PDBST remains untouched during the 

resizing, and can be reused afterwards, the current algorithm is especially efficient when many 

elements are represented in each PDBST – that is, when the buckets are concentrated. However, 

in most real-life hash tables, the load factor is often below 1 (for example, Python’s load factor is 

at 2/3 and Java at 0.75). And this means buckets are rarely concentrated enough to fully benefit 

from the avoiding rehashing process.  

 Therefore, it is uncertain at the moment how much performance improvement the current 

algorithm will bring in relation to the conventional hash table algorithm, and further testing 

would be required to fully understand its efficiency. However, as concluding the current 

discourse, it would be worth recognizing that an important potential for the current algorithm 

may lie in its extreme parallelizability. As stressed throughout, the most important aspect of the 

current algorithm is the fact that each bucket is a result from partitioning the entire hash table. 

And an important side-effect of this in the computational perspective is that operations on this 
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hash table can be performed on a multiple computing platforms (CPUs) with each platform 

making changes to its designated buckets simultaneously, without much need for 

synchronization. This could bring high performance boost to the current hash table’s regular 

operations that are not possible in conventional hash tables. But of course, further testing would 

be necessary in this regard as well.  
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