CS46 practice problems 8

These practice problems are an opportunity for discussion and trying many different solutions. They are **not counted towards your grade**, and **you do not have to submit your solutions.** The purpose of these problems is to get more comfortable with reasoning and writing about Turing machines, decidability, and recognizability.

1. **Infinite languages.** Last week we saw that the following language was decidable:

$$INFINITE_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is an infinite language} \}$$

(See solved problem 4.10 in the book for a clever way of making this argument.)

(a) Show that $INFINITE_{CFG}$ is decidable¹, where:

 $INFINITE_{CFG} = \{ \langle G \rangle \mid G \text{ is a context-free grammar and } L(G) \text{ is an infinite language} \}$

(b) Show that $INFINITE_{TM}$ is not decidable, where:

 $INFINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is an infinite language} \}$

2. Equal language checking for grammars.

$$EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ and } H \text{ are context-free grammars and } L(G) = L(H)\}$$

- (a) Show that EQ_{CFG} is co-Turing-recognizable.²
- (b) Show that EQ_{CEG} is undecidable.³

(Note: this is why Automata Tutor for grammars ran thousands of test strings, instead of giving a definite answer!)

¹Hint 1: The clever solution for $INFINITE_{DFA}$ was linked to the pumping lemma for DFAs. How can you use the pumping lemma for context-free languages in a similar way?

Hint 2: The intersection of a context-free language with a regular language is context-free.

²Hint: Use nondeterminism.

³Hint: Theorem 5.13 shows ALL_{CFG} is undecidable; you can use this result without proof.

Bonus problem if you finished the others:

Homomorphisms again! Recall the definition of homomorphism: A **homomorphism** is a function $f: \Sigma \to \Gamma^*$ from one alphabet to strings over another alphabet. We extend f to operate on strings by defining $f(w) = f(w_1)f(w_2)\cdots f(w_n)$ where $w = w_1w_2\cdots w_n$ and each $w_i \in \Sigma$. We further extend f to operate on languages by defining $f(\epsilon) = \epsilon$ and $f(A) = \{f(w) \mid w \in A\}$, for any language A.

- (a) Show that the decidable languages are not closed under homomorphism. (That is, give an example language A and homomorphism f such that A is decidable, but f(A) is not decidable.)
- (b) A homomorphism is called **nonerasing** if it never maps a character to ε . (Equivalently, $|f(\sigma)| \geq 1$ for all $\sigma \in \Sigma$.) Prove that the decidable languages are closed under nonerasing homomorphisms.