
CS46 practice problems 9
These practice problems are an opportunity for discussion and trying many different solutions. It
is not counted towards your grade, and you do not have to submit your solutions. The
purpose of this lab is to practice with Turing machines and our many accumulated techniques for
proving things about Turing machines.

ONLY IF you finish problems 1-4, scroll down to problem 5. The busy beaver problem is
interesting, and famous, and challenging. It is also much, much more complicated than any problem
I would ever ask on a homework or exam. It’s here for your intellectual enjoyment!

1. Consider the language L = {〈M,w〉 |M is a single-tape TM that never modifies the portion
of the tape that contains the original input w}.

(a) Show that L is co-Turing-recognizable, by briefly describing the elements of L and then
describing a recognizer for L.

(b) Is L decidable? Prove your answer.

Note that if you can show that L is Turing-recognizable, then you can apply Theorem
4.22 and part (a) to show L is decidable.

2. For each of the following languages, review if the language is decidable, Turing-recognizable,
co-Turing-recognizable, or none of these. ADFA, ACFG, ATM, EDFA, ECFG, ETM, ALLDFA,
ALLCFG, ALLTM, EQDFA, EQCFG, EQTM.

3. Consider the language of Turing machines which only accept strings consisting of as and bs:

TargetGPATM = {〈M〉 |M is a Turing machine and L(M) ⊆ L((a ∪ b)∗)}

Is this language regular? context-free? decidable? recognizable? co-recognizable?

You may consider these parts in any order. (Some orders will be more helpful than others.)
Support your answer for each part with a proof!

4. Consider the language of deciders:

DeciderTM = {〈M〉 |M is a decider}

(a) Recall that LTM = {〈M〉 |M is a Turing machine}, so DeciderTM ⊆ LTM.
Does Rice’s Theorem apply to DeciderTM?

(b) Show that DeciderTM is undecidable.

(c) Show that DeciderTM is both not recognizable and not co-recognizable.

1



5. Busy beaver. (Sipser 5.16) This problem is a Theory of Computation classic. It explores
the idea of “computable function” and asks: are there some numerical functions which are
not computable?

Let Γ = {a, b,t} be the tape alphabet for all Turing machines in this problem.

Define the set:

HALTk,ε
TM = {〈M〉 | deterministic Turing machine M has k states and halts on input ε}

Let BB : N → N be a function defined as follows: BB(k) is the maximum number of ‘a’s

on the tape of any machine in HALTk,ε
TM after it halts on input ε. This is called the “busy

beaver” function.

Show that the function BB is not computable. This will be a proof by contradiction, in
several steps:

(a) Show that BB is a strictly increasing function: BB(n) < BB(n+ 1).

(b) Show that if f : N→ N is a computable function, then there is some integer q such that
f(n) ≤ BB(n+ q).

(Hint: design a machine with approximately q states that when started with input
w = an halts with output af(n) on its tape.)

(c) Use parts (a) and (b) to obtain a contradiction.

(Hint: Assume for contradiction that BB(n) is computable. Show that this implies that
g(n) = BB(2n) is computable. Use this to get a contradiction.)

Answers on next page, for when you feel ready. If you’ve gotten this far, give yourself and your
discussion partners some time to try to figure out the parts of this problem before reading the
solution.

2



Busy beaver. (Sipser 5.16) Let Γ = {a, b,t} be the tape alphabet for all Turing machines in this
problem.

Define the set:

HALTk,ε
TM = {〈M〉 | Turing machine M has k states and halts on input ε}

Let BB : N → N be a function defined as follows: BB(k) is the maximum number of ‘a’s on

the tape of any machine in HALTk,ε
TM after it halts on input ε. This is called the “busy beaver”

function.
Show that the function BB is not computable. Proof by contradiction, in several steps:

(a) Show that BB is a strictly increasing function: BB(n) < BB(n+ 1).

Let M be a Turing machine with k states, in HALTk,ε
TM, which halts with BB(k) ‘a’s on its

tape. (We know there is at least one Turing machine that hits this maximum. There might be
more, but we just need M to be one of them.) We modify it by adding one new state, qnew.
Anytime M had a transition to its accept (or reject) state like:

δ(q, σ) = (qaccept, a,D)

where D ∈ {L,R} and σ ∈ {a, b,t}, we modify it to be this instead:

δ(q, σ) = (qnew, a, R)

We also add the transitions
δ(qnew, a) = (qnew, a, R)

δ(qnew,t) = (qaccept, a, R)

Thus, whenever M was about to halt, our new machine will instead go into state qnew, go to the
rightmost end of the ‘a’s on the tape, and add one more ‘a’, then halt. Thus the new machine
has k + 1 states, and when started on ε, halts with BB(k) + 1 consecutive ‘a’s on the tape.

Since BB(k+1) is the maximum over all such k+1-state machines, it must be that BB(k+1) ≥
BB(k) + 1.

(b) Show that if f : N → N is a computable function, then there is some integer q such that
f(n) ≤ BB(n+ q).

(Hint: design a machine with approximately q states that when started with input w = an

halts with output af(n) on its tape.)

We’ll assume that we are using unary notation. By definition, if f is computable, then there
is a Turing machine Mf which, when started with an on the tape, finishes with only af(n) on
the tape. This machine M has q states.

We define a new machine M ′f which, when started with ε on the tape, uses some new, additional
states q0, q1, . . . , qn−1, to first write an on the tape, then go back to the leftmost end of the
tape, then run Mf (so that it will halt with af(n) on the tape). The new state q0 is the start

3



state of M ′f ; assume that the start state of Mf is called qMf
. The transitions for these new

states are:

δ(q0,t) = (q1, a, R)

δ(q1,t) = (q2, b, R)

δ(q2,t) = (q3, a, R)

...

δ(qn−2,t) = (qn−1, a, L)

δ(qn−1, a) = (qn−1, a, L)

δ(qn−1, b) = (qMf
, a, L)

The new machine M ′f is in HALTk,ε
TM for k = n+ q and halts with af(n) on the tape, so because

BB(n+ q) is the maximum over all such Turing machines, BB(n+ q) ≥ f(n).

(c) Use parts (a) and (b) to obtain a contradiction.

(Hint: Assume for contradiction that BB(n) is computable. Show that this implies that
g(n) = BB(2n) is computable. Use this to get a contradiction.)

Assume BB(n) is computable, and let MBB be the Turing machine that computes it. (So,
started on an input tape of an, it halts with just aBB(n) on the tape.)

We define a new machine M ′ which, when started with an empty tape,

(a) first writes n ‘a’s on the tape,

(b) then doubles this to be 2n ‘a’s,

(c) then simulates MBB.

The first step requires at most n states, and steps 2 and 3 require some constant c more
states (some for the doubling, and then all the states of MBB). So machine M ′ has some
n + c = ` states, and when started on an empty string, halts with BB(2n) ‘a’s on the tape.
Thus BB(n+ c) ≥ BB(2n).

But notice that c is some constant, while n is a variable. Consider setting n = c+ 1; then we
have shown that BB(c + 1 + c) ≥ BB(2c + 2), which contradicts the fact (from part (a) that
BB is a strictly increasing function, since it must be that BB(c+ 1 + c) < BB(2c+ 2).

4


